

PREFACE

I am happy to present the revised curricula and syllabi of the following M.Sc. Chemistry programmes of the School of Chemical Sciences according to the Outcome Based Education (OBE) concept (with effect from 2021 admission onwards) for the favour of approval by the Faculty and Academic Council of the University.

- 1. M.Sc. Chemistry (Inorganic Chemistry)
- **2.** M.Sc. Chemistry (Organic Chemistry)
- **3.** M.Sc. Chemistry (Physical Chemistry)
- **4.** M.Sc. Chemistry (Polymer Chemistry)

The Board of Studies has restructured the curriculum as per the OBE concept. OBE is an educational approach that bases each part of the educational system concerning the goals set for the students. OBE aims to equip the students (learners) with the knowledge and competency orientations required for achieving their goals when they depart the institution. Further OBE empowers students to choose what they would like to study and how they would like to study it. The teaching methodologies and the evaluation system are also modified at par with the outcome-based approach. The programme Specific Outcomes (PSOs) and the Course Outcomes (COs) are also presented in the syllabus. The PSOs and the COs are well correlated in the syllabus of each course.

The draft curricula and syllabi for all the M.Sc. Chemistry programmes were discussed in a very effective manner in the Board of Studies of the School of Chemical Sciences. The Board of Studies has also modified the scheme, curricula and syllabi for the four M.Sc. programmes in conformity with the Revised CSS Regulations 2020 by the Mahatma Gandhi University to suit the Credit and Semester System. The content of the syllabus has been modified significantly (around 20 % of the total content from the previous syllabus especially by adding new courses such as industrial chemistry (third semester) and advanced courses in Inorganic, Organic, Physical and Polymer Chemistry, in the fourth semester. Another salient feature of the revised curriculum is the inclusion of a new open course named Science and Society.

The Board of Studies (BOS) feels that appreciable updating could be done in keeping up with the current developments and trends in chemistry education. Prof. K. S. Devaky (Chairman, Board of Studies of School of Chemical Sciences)

-sd-

Members of the Board of Studies of School of Chemical Sciences

(vide UO No. 3246/1/2017/Election Dated 06/08/2020)

- 1. Prof. K. S. Devaky (Chairman)
- 2. Prof. Suresh Mathew
- 3. Prof. Beena Mathew
- 4. Prof. Raju Francis
- 5. Prof. G.Anilkumar
- 6. Dr. S. Anas
- 7. Dr. Chithra Mohan
- 8. Dr. Subila K. B
- 9. Dr. Manoj N (External Expert)
- 10. Dr. Sreerag Gopi (External Expert)

3

Mahatma Gandhi University

Vision

"Mahatma Gandhi University envisions to excel in the field of higher education and cater to the scholastic and developmental needs of the individual, through the continuous creation of critical knowledge base for the society's sustained and inclusive growth."

Mission

- To conduct and support undergraduate, postgraduate, and research-level programmes of quality in different disciplines.
- To foster teaching, research and extension activities for the creation of new knowledge for the development of society.
- To help in the creation and development of manpower that would provide intellectual leadership to the community.
- To provide skilled manpower to the professional, industrial, and service sectors in the country to meet global demands.
- To help promote the cultural heritage of the nation and preserve the environmental sustainability and quality of life.
- > To cater to the holistic development of the region through academic leadership.

School of Chemical Sciences

Vision

Quality education in chemical sciences for the creation of a vibrant and inclusive society.

Mission

- Generation, preservation and dissemination of knowledge in the frontier areas of chemical science.
- Equip the students to build up a scientific career and contribute towards national development.
- > Foster collaboration with leading research institutions in knowledge production.
- > Inculcate among students' human values with global competence

Preamble

Outcome Based Education (OBE) w.e.f. the Academic Year 2021-22 SCHOOL OF CHEMICAL SCIENCES Mahatma Gandhi University

Introduction

A high-priority task in the context of education in India is the improvement of the quality of higher education for equipping young people with skills relevant to global and national standards and enhancing the opportunities for social mobility. Mahatma Gandhi University has initiated an Outcome Based Education (OBE) system for enhancing the employability of graduates through curriculum reforms grounded on a learning outcomes-based curriculum framework, upgrading academic resources and the learning environment.

Learning outcomes specify what graduates completing a particular programme of study are expected to know, understand and be able to do at the end of their programme of study. The fundamental premise underlying the learning outcomes-based approach to curriculum development is that higher education qualifications are awarded based on demonstrated achievement of outcomes, expressed in terms of knowledge, understanding, skills, attitudes and values. Outcomes provide the basis for effective interaction among the various stakeholders. It is results-oriented thinking and is the opposite of input-based education where the emphasis is on the educational process.

Outcome Based Education (OBE) process

OBE is a comprehensive approach to organise and operate a curriculum that is focused on and defined by the successful demonstrations of learning sought from each learner. The term means focusing and organising everything in an education system around "what is essential for all learners to be able to do successfully at the end of their learning experiences". OBE is an approach to education in which decisions about the curriculum and instruction are driven by the exit learning outcomes that the students should display at the end of a programme or a course. By the end of the educational experience, each student should have achieved the outcomes.

Benefits of OBE

The OBE Framework is a paradigm shift from the traditional education system into the OBE system where there is a greater focus on programme and course outcomes. It guarantees that curriculum, teaching and learning strategies and assessment tools are continuously enhanced through a continuous improvement process. All decisions including those related to curriculum, delivery of instruction, and assessment are based on the best way to achieve the predetermined outcomes. Traditionally, educators have measured learning in terms of standardised tests. In contrast, outcome-based education defines learning as what students can demonstrate that they know.

- > More directed & coherent curriculum.
- Graduates will be more "relevant" to the industry & other stakeholders (well-rounded Graduates).
- > Continuous Quality Improvement is in place.
- OBE shifts from measuring input and process to include measuring the output (outcome)

Learning Outcomes based Curriculum Framework (LOCF) for Post Graduate Programmes: IQAC MG University

One of the main objectives of OBE is to ensure continuous improvement of programmes in terms of maintaining the relevance in the curriculum as well as responding to the requirements of the stakeholders. An OBE system has been proposed and to be implemented at various departments of Mahatma Gandhi University from 2020-21 academic year onwards, as a quality-assurance approach to improve teaching and learning outcomes and processes. This OBE plan incorporates the "outcomes assessment" process that to be followed in the departments. OBE should be a key driver of curriculum management in all the departments of the University. Therefore, as envisaged by the IQAC of Mahatma Gandhi University, an OBE curricular framework has been proposed for the Masters programmes of the School of Chemical Sciences w.e.f. the academic year 2020- 2021 which is presented hereafter. In this regard, we have framed the syllabus in accordance with the programme outcomes of Mahatma Gandhi University as listed below.

Programme Outcomes (PO) of Mahatma Gandhi University

PO 1: Critical Thinking and Analytical Reasoning

Capability to analyse, evaluate and interpret evidence, arguments, claims and beliefs based on empirical evidence; reflect relevant implications to reality; formulate logical arguments; critically evaluate practices, policies, and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.

PO 2: Scientific Reasoning and Problem-Solving

Ability to analyse, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidence; and critically evaluate ideas, evidence, and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into research and apply one's learning to real-life situations.

PO 3: Multidisciplinary/Interdisciplinary/Transdisciplinary Approach

Acquire an interdisciplinary/multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary/interdisciplinary/transdisciplinary-approach for formulating constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills

Ability to reflect and express thoughts and ideas effectively in a verbal and nonverbal way; Communicate with others using appropriate channel; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information clearly and concisely and articulate in a specific context of communication.

PO 5: Leadership Skills

Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating a goal, building a team who can help achieve the goal, motivating and inspiring team members to engage with that goal, and using management skills to guide people to the right destination, smoothly and efficiently.

PO 6: Social Consciousness and Responsibility

Ability to contemplate the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness, and Sustainability

Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity, managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning

Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work and living as a dignified person in the society.

PO 9: Networking and Collaboration

Acquire skills to be able to collaborate and network with scholars in educational institutions, professional organizations, research organizations, and individuals in India and abroad.

PO 10: Lifelong Learning

Ability to acquire knowledge and skills, including "learning how to learn", that is necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives and adapting to changing trades and demands of the work place through knowledge/skill development/reskilling.

Eligibility for Admission

BSc. degree in Chemistry (Mathematics as one of the Subsidiaries) with not less than 50% marks in Part III. Only a pass in the qualifying exam is required for SC/ST candidates. Those who are awaiting final semester results of the qualifying exam can also apply provided that they should produce the mark list of qualifying examination before the commencement of their M Sc. first semester examination.

Admission Procedure

Candidates have to appear for the Common Admission Test (CAT) conducted by MG University in April/May of every year. The questions will be of objective multiple-choice type. Any other conditions prescribed by MG University from time to time in this regard will be applicable. Relaxation of marks and Reservation of seats under SC/ST is based on University/ Government Rules. Admission may be based on the written test alone or written test and interview or on the basis of the marks obtained in the qualifying examinations as well as the marks obtained in the written test, the interview and/or the group discussion conducted by the respective Schools as decided by the Faculty Council of Schools/Centres/Institutes from time to time. The Rank list for admission will be prepared as per university guidelines. While preparing the rank list, if there are same index marks for more than one candidate, they will be ranked based on actual marks obtained in the qualifying exam (CAT). Even after this, if there is a tie; they will be ranked on the basis of date of birth that is the older person is to be ranked higher. The duration of the MSc (Full-time) programme at the School of Chemical Sciences is of two years consisting of four semesters. Each semester shall comprise a minimum of 18 instructional weeks and will be adjusted to have at least 90 working days. Continuous Internal Assessment based evaluation during the course period and End Semester Examination at the end of each semester shall be conducted.

Course Registration

A student must register for the required number of courses as per the specific curriculum of a programme, after the commencement of class of that semester. Each student shall have a course card for each semester, wherein the title of the courses and corresponding course codes are entered and signed by the student, the faculty member offering the course and countersigned by the Director/Head of the Department. Based on this, a consolidated statement of courses to which registration is granted for the semester is to be prepared by the department. This statement must be signed by the Director/Head of the department and has to be submitted to the CSS section of the examination branch of the University within 20 days after the commencement of class of each semester.

Evaluation

There shall be continuous internal assessment as well as end semester examinations for all the courses. Evaluation of the first and third semester courses shall be done by the respective faculty members of SCS. End semester Examinations of the second and fourth semesters shall be conducted based on the question paper set by External Examiners. There will be a double valuation of answer scripts of the end semester examination of the even semesters of the four M Sc. programmes. One valuation shall be conducted by External Examiner and the other by the faculty member who taught the course. External Examiner should be a competent person in the specified subject from other Universities/Institutes. A panel of External Examiners is prepared based on the recommendation of the Faculty Council of SCS and approval of the same by the Vice Chancellor.

Indirect Grading is employed for the evaluation of courses. The performance of a student in each course is evaluated in terms of the percentage of marks converted to grade points. Students have to secure a minimum attendance of 75% to appear for the end semester examination. A separate minimum of 40% of marks is required in the Continuous Assessment (CA) as well as the End semester examination for a pass in a course. Students who fail to obtain a minimum of 40% mark in the Continuous Assessment can request the faculty council for a chance to improve their marks. The faculty council may permit the student to secure the minimum mark in CA, by conducting written Tests. However, only one chance will be given to improve CA marks.

Process of Evaluation

The internal assessment will be a continuous assessment (CA) that accounts for 40% of the evaluation in both theory and practical. The end semester examination will account for the remaining 60% of the evaluation.

End-Semester Examination: The end semester examination will account for 60% of the evaluation. The evaluation of the end-semester examination of the first and third semesters shall be done by the faculty who taught the course. Evaluation of the second and fourth semester courses based on questions set by external experts shall be evaluated by two examiners; one, the external (as far as possible the question paper setter shall evaluate the examination paper as well) and the other, the internal examiner, the faculty who taught course. The Head of the School will make necessary arrangements for the evaluation of the answer scripts. The project report/dissertation shall be evaluated by two examiners, one the faculty member of the school and the other an external examiner to be decided by the HOD from a panel recommended by the faculty council and approved by the Vice Chancellor. The comprehensive viva-voce will be carried out along with the project evaluation.

Continuous Assessment (CA): The student's participation and classroom performance as well as the feedback received from tests, tutorials, assignments and term papers shall form the basis for continuous assessment (CA). It accounts for 40% of the evaluation in both theory and practical. This assessment shall be based on a predetermined transparent system

10

involving periodic written tests, assignments and seminars in respect of theory courses and based on tests, lab skills, records/viva and attendance in respect of practical courses.

The percentage of marks assigned to various components for internal evaluation is as follows

a. Theory

SI. No	Components	Percentage of marks
1.	Test Papers (2)	50
2.	Assignment / Debates/Book review	25
3.	Seminar/ Presentation of Case study	25

b. Practicals

SI. No	Components	Percentage of marks
1.	Lab skill	25
2.	Observation and recording results	30
3.	Punctuality and neatness	25
4.	Viva-voce	20

Test Papers: For each course, there shall be at least three class tests during a semester. The average of the marks obtained in the best two tests will be counted as the internal test component of CAS. Valued answer scripts shall be made available to the students for perusal within 10 working days from the date of the tests.

Assignments: Each student shall be required to do 2 assignments for each course. Assignments after valuation must be returned to the students. The teacher shall define the expected quality of the above in terms of structure, content, presentation and the like, and inform the same to the students. Punctuality in the submission of assignments/records is to be given a weightage in the internal evaluation.

Seminar: Every student shall deliver one seminar as an internal component of every course and must be evaluated by the respective course teacher in terms of structure, content, presentation and interaction. The soft and hard copies of the seminar report are to be submitted to the teacher in charge.

Results of Continuous Assessment: The results of the CA counter-signed by the Head of the school/Centre shall be displayed on the notice board 5 days before the end semester examinations. The marks awarded for various components of the CA shall not be rounded off if it has a decimal part. The total marks of the CA shall be rounded off to the nearest whole

number. Relevant records of continuous assessment (CA) must be kept in the department and that must be made available for verification.

Project Work: There shall be a project to be undertaken by all students. The dissertation entails field work, lab work, report writing, presentation and viva voce. The class hours allotted for project work may be clustered into a single slot so that students can do their work at parent school or other institutions for a continuous period. However, appropriate changes can be made by the faculty council in this regard. Project/dissertation shall be carried out under the supervision of a teacher in the parent School/Centre/Institute or other research institutes or industrial establishment or university departments if they permit the students to do so, after getting permission from the Department Head. In such cases, one of the teachers from the schools/centres/institutes would be the co-supervisor/internal guide and an expert from the industry/ research organization concerned shall act as supervisor/ external guide.

Process of evaluation of project work in the fourth semester: The evaluation of the project in the fourth semester will be done by an external examiner, based on the work done by the student, content, presentation of the project work and a viva-voce. A panel of External Examiners is prepared based on the recommendation of the Faculty Council of SCS and approval of the same by the Vice Chancellor.

There is no provision for improving the continuous assessment/final evaluation of the project.

Pattern of Question papers for the End- Semester Written Examination

The question papers set for the end-semester written examination will have three sections and carry 60 marks as detailed below:

Section A - Fifteen short answer questions, a minimum of one from each Unit. Students will have to answer any twelve. Each question will carry three marks (Total 36 marks).

Section B - Six short essay questions, a minimum of one from each Unit. Students will have to answer any four. Each question will carry 6 marks (Total 24 marks).

Both the sections will contain questions covering all the cognitive levels Remembering/ Understanding/Applying/Analysing/ Evaluating and Creating. There will be questions of higher levels of learning for at least 10 marks. The End Semester Examination (ESE) will be of three hours duration and carry 60 marks. The ESE for the core and elective courses shall be conducted based on the following pattern of the question paper.

Section	Cognitive level	Choice and	Question	Total	Alignment
		marks of	specification	Marks	with Course
		questions			outcomes
					(COs)
Section	Remembering/	12 out of 15	Minimum one	36	Aligned with
A	Understanding/	questions; 3	question from		COs
	Applying/	marks each	each unit		
	Evaluating				
Section	Applying/	4 out of 7	minimum one	24	Aligned with
В	Analysing/	questions; 6	question from		COs
	Evaluating/	marks each	each unit		
	Creating				
Section				60	
A+ B					

The cognitive levels of questions in the End Semester Examinations are summarised as:

- Lower levels of learning (Remembering/Understanding/Applying): 30 to 40%
- Higher Levels of Learning (Analysing/Evaluating/Creating): 60 to 70%

The **difficulty levels** of questions in the End Semester Examinations are categorised as Low, Medium and High. The percentage of questions in each level of difficulty are given below:

- Low: 20 to 30%
- Moderate: 55 to 65%
- High: 15 to 25%

Grading System

The performance of a student in each course is evaluated in terms of a percentage of 21 marks with a provision for conversion to grade points. The grading system followed is that of relative grading on a ten-point scale. The following table indicates the performance range and the relative value of the grades (grade points) on the scale.

Range of % of	Letter Grade	Performance	Grade points
95 to \leq 100	0	Outstanding	10
85 to ≤ 95	A PLUS	Excellent	9
75 to ≤ 85	A ONLY	Very Good	8

Performance range and the Relative value of the Grades (Grade points)

65 to ≤ 75	B PLUS	Good	7
55 to ≤ 65	B ONLY	Above Average	6
45 to ≤ 55	С	Average	5
$40 \text{ to} \le 45$	Р	Pass	4
< 40	F	Fail	0
Absent	Ab	Absent	0

Minimum grade for passing in a course or programme: The minimum for a pass in a course is 'P' grade. The minimum credit point requirement (CGPA) for the programme is four.

Revaluation

The answer scripts of examinations under CSS shall have provisions for revaluation. Evaluation or Scrutiny of answer scripts for the first and third semesters are provided. There is no provision for revaluation or scrutiny of answer scripts for the End Semester Examinations of second and fourth Semesters as double valuation is performed on the scripts. The application for scrutiny and revaluation of answer scripts shall be submitted to the Head of the concerned School/Department/Centre within 15 days from the date of publication of the results.

Reappearance and improvement in Examinations

A student who failed for a course in a semester can register for reappearance in the forthcoming examination, subject to the conditions set forth in these regulations. Improvement of marks/grades in the forthcoming examination can also be done, subject to the conditions in these regulations.

Registration for Improvement

A candidate has to apply for registration for improvement by paying the requisite fee. Candidates are not permitted to register for improvement of grades for Individual courses. Candidates in the first and second semesters, who have secured SGPA letter grade 'P' or above in the End Semester Examination can improve their grade by reappearing for all the semester courses along with the next immediate batch. In such cases a candidate will be awarded a new grade only if there is an improvement in grade in the new examination; otherwise, the candidate is eligible to retain the grade already awarded. Candidates in the third semester, who have secured the SGPA letter grade 'P' or above in the End Semester Examination, can improve their grade by reappearing for all the semester courses, along with the third semester supplementary examination being conducted for failed candidates immediately after the completion of End Semester Examination of fourth semester. This provision is applicable only for the third semester. Improvement of the fourth semester can be done along with the immediate lower batch. If the improvement is meant to obtain minimum CGPA requirement, a candidate has the option to decide which semester (third or fourth) is to be improved; however, the grade given to the candidate shall be that obtained for the entire semester improvement examination. The first and second semester SGPA cannot be improved after the completion of the fourth semester. Only third and fourth semester SGPA can be improved after the completion of a programme. The marks/grades awarded for continuous assessment and that for the Project/dissertation cannot be improved. SGPA secured in the fourth semester can be improved only to fulfil the minimum CGPA requirement.

Reappearance

Candidates in the first and second semesters who have secured a grade of 'F' or 'Ab' in any of the courses can avail themselves two immediate consecutive chances to reappear for 23 examinations, course-wise, provided the candidate has applied for the same and paid the required fee. Candidate in the third semester who has secured a grade of 'F' or 'Ab' in any of the courses can reappear for exams course-wise in the third semester supplementary examination, which will be conducted immediately after the completion of the End Semester Examination of the fourth semester, provided the candidate has applied for the same and paid the required fee (fee for supplementary examination of any course shall be full semester examination fee irrespective of the number of courses involved). Candidates who secured the grade of only 'F' or 'Ab' in a course in the fourth semester examination can re-appear coursewise, along with the immediate lower batch. Candidates who secured the grade of only 'F' or 'Ab' in a course in the third/fourth semester examinations will be given two additional chances for course-wise reappearance even after the completion of the programme; but it has to be done within two years after the completion. In such cases, a candidate has to apply for the same as a supplementary exam and pay the required fee (The fee for supplementary examination of any course shall be full semester examination fee irrespective of the number of courses involved).

(As per the M G university CSS regulations amended from time to time)

15

Scheme and Syllabi

Programme 2

M. Sc. Chemistry (Organic Chemistry)

SCHOOL OF CHEMICAL SCIENCES

PROGRAMME	: M. Sc. Chemistry (Organic Chemistry)
DURATION	: 2 years (2021 Admission onwards)
Total credits required	: 86 (for 4 semesters) [Core: 62; Elective: 20; Open: 4]

- * The student has to choose three elective courses for semester I, three elective courses for semester II and two elective courses for semester III and two elective courses for semester IV
- ** The student has to choose **one open course** of 4 credits for semester III from any other School under the Faculty of Science.
- *** In the evaluation process internal –Continuous Assessment (CA) accounts for 40% and the End- Semester Examination will account for the remaining 60%.

Program Specific Outcomes (PSOs): At the completion of the M.Sc. Chemistry (Organic Chemistry) program, the students should be able to:

PSO	Expected outcome
1	Provide a strong foundation in Chemistry that emphasizes scientific reasoning and analytical problem-solving.
2	Provide students with the skills required to succeed in M.Sc., also enrich the students with basic skills to perform in the Chemical industry
3	Promote research interest in students and enable them to plan and execution research in frontier areas of chemical sciences
4	Expose the students to a level of experimental techniques using modern instrumentation.
5	Develop teamwork, communication, time management and leadership skills across multicultural contexts
6	Acquire firm knowledge of fundamental theories, and concepts of all branches of Chemistry and able to apply them to advanced studies and be able to develop analytical thinking and apply the same for the understanding of underlining principles, proposing mechanisms, problem solving, identification of chemical species and arriving to logical conclusions.
7	Gain knowledge in classical laboratory techniques and be able to use modern instrumentation, so that they can perform new experiments, and obtain experimental data and its interpretation through theoretical principles.

SEMESTER I (23 credits)								
Course	Course Title			/eek	Cure al lit	Total		
Code	course ritle	burse Title		Р	Credit	credits		
	Core Courses							
CSM21C02	Quantum Mechanics and Atomic Structure	2	2	-	3			
CSM21C03	Chemical Thermodynamics	2	2	-	3			
CSM21C04	Molecular Spectroscopy	2	2	-	3 17			
CSM21C05	Organic Reaction Mechanisms	2	2	-	3 17			
CSM21C06	Inorganic Chemistry Lab-I	-	-	6	2			
CSM21C07	Stereochemistry and Conformations of	2	2		3			
	Organic Compounds	2	2	-	5			
	*Elective Courses (Choose any three)	•	•					
CSM21E41	Equilibrium Statistical Mechanics	2	-	-	2			
CSM21E42	Introduction to Polymer Chemistry	2	-	-	2	6		
CSM21E43	Supramolecular Chemistry	2	-	-	2			
CSM21E44	Theory of Polymer Solutions	2	-	-	2			
CSM21E46	Main Group Elements Chemistry	2	-	-	2			

SEMESTER II (22 credits)						
Course	Course Title	Нс	ours/	Week	Credit	Total
Code		L T P		Р	cicuit	credits
	Core Courses					
CSM21C12	Structural and Solid-State Chemistry	2	2	-	3	
CSM21C13	Photochemistry and Pericyclic Reactions	2	2	-	3	
CSM21C14	Spectroscopic methods in Chemistry	2	2	-	3	16
CSM21C15	Physical Chemistry Lab-I	-	-	6	2	
CSM21C16	Organic Chemistry Lab-I	-	-	6	2	
CSM21C17	Reactions and Reagents in Organic Chemistry 2 2		-	3		
	*Elective Courses (Choose any three)					
CSM21E51	Bioinorganic Chemistry	2	-	-	2	
CSM21E52	Chemical Bonding and Group Theory	2	-	-	2	
CSM21E55	Biochemistry	2	-	-	2	6
CSM21E56	Natural and Synthetic Polymers	2	-	-	2	Ũ
CSM21E57	Medicinal Chemistry	2	-	-	2	
CSM21E58	Chemistry of Heterocyclic Compounds	2	-	-	2	
CSM21E59	Chemistry of Coordination Compounds	2	-	-	2	

	SEMESTER III (22 credits)					
Course Code	Course Title	Hours/Week			Credit	Total
couc			Т	Ρ		credits
	Core Courses					
CSM21C21	Organo metallic Chemistry	2	2	-	3	
CSM21C22	Analytical and Nuclear Chemistry	2	2	-	3	14
CSM21C23	Chemical Kinetics	2 2 - 3				
CSM21C26	Advanced Organic Synthesis	2	2	-	3	
CSM21C27	Organic Chemistry Lab– II	-	-	6	2	
	*Elective Courses (Choose any two)					
CSM21E71	Fundamentals of Electrochemistry	2	-	-	2	
CSM21E72	Computational Methods in Chemistry	2	-	-	2	
CSM21E74	Surface Chemistry and Catalysis	2	-	1	2	4
CSM21E76	Chemistry of Natural Products	2	-	1	2	
CSM21E77	Nanomaterials	2	-	-	2	
CSM21E82	Industrial Chemistry	2	-	-	2	
**Open Courses (Choose any one)						
CSM21086	Environmental Chemistry	4	-	-	4	4
CSM21087	Science and Society	4	-	-	4	

	SEMESTER IV (19 credits)						
Course Code	Course Title	Hou	rs/W		Credit	Total	
Code		L	Т	Р	cicult	credits	
	Core Courses						
CSM21C35	Research Project and Seminar	-	-	-	9 15 3		
CSM21C36	Comprehensive Viva-voce	-	-	I			
CSM21C38	Advances in Organic Chemistry	2	2	-	3		
	*Elective Courses (Choose any one)						
CSM21E91	Review Report	-	2	-	2	4	
CSM21E92	Industry Visit Report	-	-	-	2	•	
CSM21E94	Instrumental Methods in Organic Chemistry	2	-	I	2		

CSM21C02 Quantum Mechanics and Atomic Structure

School Name	School of Chemical Sc	iences						
Programme	M.Sc.							
Course Name	Quantum Mechanics and Atomic Structure							
Course Credit	3							
Type of Course	CORE							
Course Code	CSM21C02							
Course Summary & Justification	that the behaviour of fundamental point of studies on quantum bonding. The Content concept of the wave f	Learning this course helps to develop concepts in quantum mechanics such that the behaviour of the physical universe can be understood from a fundamental point of view. It provides a strong foundation for further studies on quantum mechanics, molecular spectroscopy, and chemical bonding. The Content will include Review of the Schrodinger equation, The concept of the wave function, and Orbital. Degeneracy etc. It also gives an insight into a particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom.						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120		
Pre-requisite	Basic knowledge in classical mechanics, d equations.				-			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.	
1	Basic knowledge of Quantum Mechanics	U	1	
2	Understand the inadequacy of classical mechanics and the origin of quantum mechanics	U	1	
3	Identify the operator formulation of quantum mechanics	R	1	
4	Solve and derive the Schrodinger equation	Е	1	
5	Apply the principles of quantum mechanics to particle in a box, harmonic oscillator and rigid rotor	A	1	
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S) Interest (I) and Appreciation (Ap)			
COU	RSE CONTENT	Hours	CO No	

Unit 1: From classical to quantum mechanics	4	1, 2
Content for Classroom Transaction (Sub-units)		
1.1. Plank's quantum postulates		
1.2. Blackbody radiation		
1.3. Photo-electric effect		
1.4. Wave-particle duality		
1.5. Double-slit experiment		
1.6. Heisenberg's Matrix mechanics (summary)		
1.7. Deduction of Schrodinger Wave mechanics from classical mechanics		
Unit 2: Formulation of Quantum mechanics	10	3, 4
Content for Classroom Transaction (Sub-units)		
2.1. The postulates and general principles of quantum mechanics		
2.2. Fundamental theorems of quantum mechanics		
2.3. Time-dependent and time-independent Schrodinger equations		
2.4. Stationary states		
2.5. Formulation of quantum mechanical problem.		
2.6. Concept and Rules of proper behavior of operators and their		
physical significance.		
Unit 3: Quantum mechanical description of simple systems	12	5
Content for Classroom Transaction (Sub-units)		
3.1. The particle in a one-dimensional box-complete treatment.		
3.2. The particle in a three-dimensional box, Separation of variables,		
Degeneracy, Symmetry breaking		
3.3. Treatment of more than one particle (non-interacting) in a box and		
its applications		
3.4. Tunnelling		
3.5. Harmonic Oscillators Classical concepts.		
3.6. Derivation of Schrödinger equation.		
3.7. Harmonic oscillator (complete treatment): Wave functions and		
energies & molecular vibrations,		
3.8. Three-dimensional harmonic oscillator		
	10	-
Unit 4: Angular momentum	10	5
Content for Classroom Transaction (Sub-units)		
4.1. Rigid rotator (compete treatment)		
4.2. The wave equation in spherical polar coordinates.		
4.3. Planar rigid rotator (or Particle on a ring), Wave functions in the real		
form, Polar diagrams.		
4.4. Nonplanar rigid rotators (or particle on a sphere), Separation of variables.		
4.5. Legendre and Associated Legendre equations, polynomials &		
Spherical harmonics		
4.6. Polar diagrams of spherical harmonics.		
4.7. Angular momentum operators and their commutation relations		
4.8. Spherical harmonics as Eigen functions and eigen values of angular		
momentum operators		
4.9. Quantization of angular momentum, Space quantization.		
	1	

Unit 5: Quantum mechanical treatment of hydrogen-like system	12	5
Content for Classroom Transaction (Sub-units)		
5.1. Potential energy of hydrogen-like systems.		
5.2. The wave equation in spherical polar coordinates, Separation of variables.		
5.3. Wave functions and energies of hydrogen-like atoms, Orbitals.		
5.4. Radial functions, Radial distribution of functions and their plots		
5.5. Angular functions (Spherical harmonics) and their plots, Orbital diagrams.		
5.6. Explanation of Hydrogen spectrum, Fine structure,		
5.7. The postulate of spin by Unlebeck and Goldsmith,		
5.8. Dirac's Relativistic Schrodinger equation for hydrogen atom and discovery of spin,		
5.9. Hydrogen wave functions including spin or spin orbitals,		
5.10. Construction of Spin orbitals from Orbitals and Spin functions.		
Unit 6: Many-electron Systems	12	5
Content for Classroom Transaction (Sub-units)		
6.1. Many-body problem. Approximation methods		
6.2. Variation methods, Variation theorem with proof		
6.3. Perturbation method. Time-independent perturbation method (non- degenerate case only). Hartree-Fock Self-Consistent Field (HF-SCF) method.		
6.4. Slater's treatment of complex atoms, Slater Orbitals,		
6.5. Electron spin and atomic structure- Construction of wave functions including spin for many-electron atoms		
6.6. Symmetric and antisymmetric wave functions, Pauli's antisymmetric principle, Slater determinants,		
6.7. Pauli's exclusion principle.		
6.8. Vector model of atoms and spectroscopic terms		
6.9. Coupling of angular momenta, LS and jj-couplings, LS coupling and		
Spectroscopic term symbols for atoms.		
6.10. Brief mention of selection rule in atomic spectroscopy.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Surprise test					
	 Internal Test – Objective and descriptive answer type 					
	 Submitting assignments 					
	 Seminar Presentation – select a topic of choice in the concerned area and present in the seminar 					
	B. Semester End examination					

REFERENCES

1. A. McQuarrie, Quantum Chemistry, 2nd Edn. University Science Books, 2007.

- J. P. Lowe, Quantum Chemistry, 2nd Edn. Academic Press, 1993.
 N. Levine, Quantum Chemistry, 5th Edn. Prentice Hall, 1999.

CSM21C03 Chemical Thermodynamics

School Name	School of Chemical Sc	iences				
Programme	M.Sc.					
Course Name	Chemical Thermodyn	amics				
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C03					
Course Summary & Justification	An introduction to classical thermodynamics and surface Chemistry. Topics to be covered include Zeroth law of thermodynamics, first law of thermodynamics, enthalpy, entropy, second and third law of thermodynamics, Helmholtz and Gibbs energies, chemical potential, phase diagrams and surface chemistry. Chemical thermodynamics helps to establish and develop the principles that are used to explain and interpret many of the physical and chemical observations. Also, it explains many of the proposed hypotheses in terms of fundamental concepts. It imparts correctness and depth of sophistication to conceptual arguments in physical chemistry. Surface chemistry helps to understand surface phenomena and physical methods for studying surfaces.					
Semester	1			-		
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Bachelors degree in chemistry, with physics and mathematics as subsidiaries.					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Be able to describe the fundamental scientific principles of	U	1, 5
	thermodynamics and apply these principles in assignments, discussions on/offline, and new problems.		
2	Obtain problem-solving skills in physical chemistry by solving assignments, quizzes and on/off-line discussions and lecture material.	A, E, S, I	3, 5
3	Be able to apply the knowledge to predict and rationalize the physical and chemical properties of systems and the direction in which chemical and physical processes proceed.	Ар	1, 2

4	To provide students with the skills required to succeed in the Master program.	A	1, 7		
5	Recognize assumptions and limitations in the scientific models and their possible impact on the results by training on case studies, lectures, assignments, quizzes	U	1,2		
6	 (i) Be able to work productively and collaboratively as a team member by solving problems with other students. (ii) Evaluate the potential impact of thermodynamics may have on daily life, health and the environment. 	U	4, 5		
*Ren	Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S				

Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO NO
Unit 1: First Law of Thermodynamics	8	1, 2, 6
1.1. Variables of thermodynamics, theoretical methods, Practical		
techniques.		
1.2. The first law of thermodynamics, thermodynamic functions, Joule		
Thomson effect. Coefficient of thermal expansion, Application of First		
law to a cyclic process.		
Unit 2: Second Law of Thermodynamics - Entropy	10	1, 3, 6
2.1. The Clausius inequality.		
2.2. Entropy changes accompany expansion, phase transition and heating.		
2.3. Free energy functions.		
2.4. Relation between thermodynamic functions. Maxwell relations.		
Variation of entropy with temperature and pressure		
2.5. Third law of thermodynamics: Need for third law Calculation of		
absolute entropy, unattainability of absolute zero.		
Unit 3: Partial Molar Quantities and Chemical Potential	12	3, 5, 6
3.1. Gibbs-Duhem equation, determination of partial molar volume and		
enthalpy.		
3.2. Fugacity, relation between fugacity and pressure, determination of		
fugacity of a real gas, variation of fugacity with temperature and		
pressure.		
3.3. Activity, the dependence of activity on temperature and pressure.		
3.4. Thermodynamics of mixing, Gibbs-Duhem-Margules equation		
3.5. Konowaloff's rule, Henry's law		
3.6. Excess thermodynamic functions – free energy, enthalpy, entropy and		
volume, determination of excess enthalpy and volume.		
Unit 4: Chemical Equilibria	10	3, 5, 6
4.1. Chemical affinity and thermodynamic functions, effect of temperature		
and pressure on chemical equilibrium		
4.2. vant Hoff reaction isochore and isotherm		
4.3. Nernst heat theorem		
Unit 5: Phase Rule	10	3, 5, 6
5.1. Application to one, two and three component systems.		
5.2. Liquid-vapour equilibria of binary systems.		
Unit 6: Applications of free energy function to physical and chemical	10	5, 6
changes		
6.1. Equilibrium in chemical reactions.		

6.2. Effect of temperature and pressure on the chemical equilibrium- Van't	
Hoff reaction isochore and isotherm	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	 Internal Test - On MCQ based and extended answer type 					
	 Seminar Presentation – a theme is to be discussed and 					
	identified to prepare a paper and present in the seminar					
	B. End semester examination					

REFERENCES

- 1. P. Atkins, J. de. Paula, Physical Chemistry, 8th Edn. Oxford University Press, 2006.
- P. Bolgar, H. Lloyd, A. North, V. Oleinikovas, S. Smith, J. Keeler, P. Atkins' Physical Chemistry, 11th Edn. Oxford University Press, 2017

SUGGESTED READINGS

- 1. A. McQuarrie, J. D. Simon, Molecular Thermodynamics, University Science Books, 2004.
- 2. R. S. Berry, S. A. Rice, J. Ross, Physical Chemistry, 2nd Edn. Oxford University Press, 2007.
- 3. R. A. Alberty, R J Silbey, Physical Chemistry, 4th Edn. J. Wiley & Sons, 1994
- 4. F. Daniels, R. A. Alberty, Physical Chemistry, 8th Edn. Wiley, New York, 1994
- 5. P. W. Atkins, Physical Chemistry, 8th Edn. Wiley, New York, 2006
- 6. W. Adamson, The Physical Chemistry of Surfaces, 2nd Edn. Wiley. New York, 1998
- 7. G. A. Somorjai, Chemistry of Surfaces, 3rd Edn. Wiley, New York, 2005
- 8. A. E. Alexander, P. Johnson, Colloid Science, Oxford University Press, Oxford, New York, 1996.

CSM21C04 Molecular Spectroscopy

School Name	School of Chemical S	Sciences				
Programme	M.Sc.					
Course Name	Molecular Spectroso	сору				
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C04					
Course Summary & Justification	CSM21C04 This course is designed at providing students with theoretical concepts of various spectroscopy, i.e., Atomic, Molecular, Vibrational, Raman, NMR, EPR, Mossbauer and electronic to analyse the molecular and electronic structure of atoms and molecules. Interaction of light with molecules, spectral transitions, and theoretical explanation of spectral data will be discussed. Students will be able to use quantum mechanics and group theory principles to understand molecular spectra; Also, they will be able to identify the relationship between molecular spectra and molecular properties which will help the students to analyse the structure of atoms and molecules using spectroscopic methods. Spectroscopy is a multidisciplinary subject and the spectroscopic tools are significant to characterize the structure and properties of new compounds designed for various applications. Thus, spectroscopy is inevitable in areas of chemistry, physics, biochemistry, medical fields, chemical industry, etc. Learning this course will provide a strong foundation in the key concepts of spectroscopy and will help the students to identify the use of appropriate spectroscopic techniques for the characterization of various molecules. Understanding this subject will enable the students to work in frontier areas					
Semester	1	· .				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Basic knowledge abou	t spectrosco	opy at the E	Bachelor's lo	evel	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	After Completion of this course, the student should be able to; Understand the interaction of light with matter and the key concepts of spectroscopy to probe the structure of molecules.	U	1
2	Apply quantum mechanics and group theory principles to understand molecular spectra	A	3
3	Identify the relationship between molecular spectra and molecular properties	Ар	2, 4, 5
4	Analyses and explain the structure of atoms and molecules using various spectral data.	A	2, 4, 5
5	Evaluate the utility of various spectroscopy as a qualitative and quantitative method.	U	6
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Creat est (I) and Appreciation (Ap)	e (C), Skill (S	5),

COURSE CONTENT	Hours	CO No.
Unit 1: Introduction to Spectroscopy	5	1
Content for Classroom Transaction (Sub-units)		
1.1. Origin of different spectra, intensity of absorption		
1.2. Signal-to-noise ratio, natural line width		
 1.3. Influencing factors spectral intensity-transition probability, Maxwell-Boltzmann distribution 		
1.4. Contributing factors-Doppler broadening, Lamb dip spectrum		
1.5. Beers-Lamberts law		
1.6. Born Oppenheimer approximation		
1.7. Energy dissipation from excited states, relaxation time.		
Unit 2-Microwave Spectroscopy		
Content for Classroom Transaction (Sub-units)	7	2, 3, 4, 5
2.1. Principal moments of inertia and classification (linear, symmetric		
tops, spherical tops and asymmetric tops), rigid and non-rigid rotators		
2.2. Selection rules,		
2.3. Intensity of rotational lines, relative population of energy levels,		
derivation of J max, effect of isotopic substitution,		
2.4. Calculation of intermolecular distance,		
2.5. Stark effect and its application, nuclear and electron spin interaction		
Unit 3: Infrared Spectroscopy		
Content for Classroom Transaction (Sub-units)	7	2, 3, 4, 5
3.1. Vibrational energy of diatomic molecules, Harmonic Oscillator,		
selection rules		
3.2. Anharmonicity		
3.3. Morse potential energy diagram, fundamentals, overtones and hot		
bands,		
3.4. Determination of force constants, diatomic vibrating rotator,		
breakdown of the Born-Oppenheimer approximation, effect of nuclear spin		

3.5. Vibra	tional spectra of polyatomic molecule		
3.6. Norn	nal modes of vibrations, combination and difference bands		
	i resonance, fingerprint region and group vibrations, overtones,		
hot b			
3.8. Effec	t of H-bonding on group frequency		
3.9. FTIR			
Unit 4: Rama	n Spectroscopy		
	Classroom Transaction (Sub-units)	7	2, 3, 4, 5
4.1. Intro	duction to Raman spectroscopy		
4.2. Class	ical and quantum theories of Raman effect		
4.3. Rota	tional and vibrational Raman spectrum		
	plementarities of Raman and IR spectra, mutual exclusion		
princ	•		
	ized and depolarized Raman lines		
4.6. Reso	nance Raman scattering and resonance fluorescence		
	onic Spectroscopy		
	Classroom Transaction (Sub-units)	9	2, 3, 4, 5
	symbols and electronic spectra of diatomic molecules,		
	tion rules,		
	ck-Condon principle, predissociation, calculation of heat of		
	ciation-Birge and Sponer Method, fortrat diagram		
	ronic spectra of polyatomic molecules, radiative and non-		
	tive decay, Jablonski diagram		
	rent types of lasers-solid state, continuous wave, gas and		
	nical lasers, frequency doubling		
	Spectroscopy	12	2, 3, 4, 5
	Classroom Transaction (Sub-units)		
	ear spin interaction with the magnetic field,		
	ear energy levels and its population,		
	or precession,		
	kation methods,		
	ors affecting nuclear relaxation		
	nical shift, exchange phenomenon, factors influencing coupling,		
•	lus relationship. variation of coupling constant with dihedral		
angle			
	MR, second-order effects on spectra, spin systems (AB, AB2),		
•	lification of second-order spectra-shift reagents,		
	contact and pseudo-contact shifts		
6.10.	High field NMR, double irradiation, selective decoupling,		
6.11.	Double resonance, NOE effect, two-dimensional NMR-COSY and HETCOR		
6.12.	Resonance of other nuclei		
6.13.	¹³ C NMR-chemical shift and structure correlation,		
6.14.	¹³ C coupling constants		
6.15.	Solid state NMR		
0,10.			
6.16.	Magic angle spinning.		

Unit 7: EPR Spectroscopy	8	2, 3, 4, 5
7.1. Electron spin interaction with magnetic field,		
7.2. Hyperfine coupling, spin-orbit coupling		
7.3. g factor, significance of g factor, determination of gII and g \perp ,		
7.4. Fine and hyperfine structures, Kramers' degeneracy,		
7.5. McConnell equation.		
Unit 8: Mossbauer Spectroscopy		
8.1. Basic principles, Doppler effect,	5	2, 3, 4, 5
8.2. Chemical shift, application to metal complexes		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Explicit Teaching, E-learning, interactive Instruction: Seminar,					
Approach	Group Assignments, Authentic learning, Library work and Group discussion,					
	Presentation by individual students					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment					
	Seminar Presentation					
	B. Semester End examination					

REFERENCES

1. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Edn. Tata McGraw Hill, 1994.

SUGGESTED READINGS

- 1. G. Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall of India, 2001.
- 2. H. Kaur, Spectroscopy, 6th Edn. Pragati Prakashan, 2011.
- 3. R. S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 4. K. J. Laidler, J. H. Meiser, Physical Chemistry, 2nd Edn. CBS, 1999.
- 5. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press, 2001.

CSM21C05 Organic Reaction Mechanisms

School Name	School of Chemica	l Sciences				
Programme	M.Sc.					
Course Name	Organic Reaction N	/lechanism	าร			
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C05					
Course Summary & Justification	have a basic knowl reactions. A thorou extremely useful in efficiency. A student able to write reaso considered valid un	Learning reaction mechanisms is very important for a chemistry student to have a basic knowledge about the course and the outcome of different reactions. A thorough understanding of organic reaction mechanisms is extremely useful in predicting the products and improving the reaction efficiency. A student needs to know basic concepts of organic chemistry to be able to write reasonable reaction mechanisms. A mechanism cannot be considered valid unless there is experimental evidence to support it. The student needs to know basic experiments that can be used to validate				
Semester	I					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Basic knowledge in c	organic cher	nistry			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No
1	Propose the mechanism of a given organic reaction	U	1
2	Predict the product formed in a reaction under specified conditions	А	1, 2
3	Identify the change in the mechanism and the product formed with the	Ар	1, 2,
	change in reaction conditions		3
4	To predict the mechanisms of different molecular rearrangements	An	2, 3
5	Describe reaction mechanisms in terms of energetics, reaction kinetics,	U	3
	and thermodynamics.		
6	Correlate the reactivity of a compound with its structure.	С	3

7	Evaluate the yield of a particular product in a mixture under a set of	Е	5
	conditions		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Chemical bonding and molecular structure	10	1, 2, 3,
Content for Classroom Transaction (Sub-units)		6, 7
1.1. Valence Bond Theory		
1.2. Molecular Orbital Theory		
1.3. Electronic effects		
1.4. Acids and bases		
1.5. Hammett and Taft equations		
1.6. linear free energy relationships		
1.7. Solvent polarity scales- Gurundwald-Winstein equation		
Unit 2: Kinetic and thermodynamic aspects	8	2, 3, 6, 7
Content for Classroom Transaction (Sub-units)		
2.1. Kinetic versus thermodynamic control		
2.2. Hammond's postulate and Curtin-Hammett principle		
2.3. Isotope effects		
2.4. Catalysis by acids and bases		
2.5. Lewis acid catalysis		
2.6. Methods to find reaction mechanisms		
Unit 3: Nucleophilic substitution reactions	12	1-7
Content for Classroom Transaction (Sub-units)		
3.1. Nucleophiles and electrophiles		
3.2. Comparison between nucleophilicity and basicity		
3.3. Detailed study of SN1, SN2, SNi, SN11, SN21, and borderline		
mechanisms.		
3.4. Nucleophilicity, Leaving group effect and solvent effects		
3.5. Neighboring group participation		
3.6. Phase transfer catalysis (PTC) and application of crown ethers.		
3.7. Rearrangement of carbocations, the norbornyl cation and other		
nonclassical carbocations, superacids		
Unit 4: Addition and elimination reactions:	10	1-7
Content for Classroom Transaction (Sub-units)		
4.1. Mechanism of addition reactions		
4.2. addition of hydrogen halides to alkenes,		
4.3. addition of halogens		
4.4. addition of metallic species-hydroboration, oxy-mercuration		
4.5. elimination reactions (E1, E2 and E1cB mechanisms)		
4.6. dehydrohalogenation,		
4.7. dehydration of alcohols,		
4.8. substitution versus elimination		

Unit 5: Aromatic substitution reactions	10	1, 2, 3, 5
Content for Classroom Transaction (Sub-units)		
5.1. Aromatic electrophilic substitution reactions-mechanism		
5.2. Partial rate factors		
5.3. Nitration, halogenation, sulphonation and Friedel-Crafts reactions		
5.4. Activating/deactivating, ortho-para and meta orienting effects in		
substituted benzenes.		
5.5. Aromatic nucleophilic substitution reactions-benzyne mechanism		
5.6. Substitution on polynuclear aromatic systems.		
Unit 6: Selected rearrangements in organic chemistry	4	1, 2, 4, 6
Content for Classroom Transaction (Sub-units)		
(Ten rearrangement reactions with mechanisms)		
Unit 7: Mechanisms of nucleophilic substitution of carbonyl compounds	6	3-7
Content for Classroom Transaction (Sub-units)		
7.1. Reactivity of carbonyl groups		
7.2. Addition and substitution reactions		
7.3. Hydrolytic reactions Ester and amide hydrolysis reactions –different		
mechanisms.		
7.4. Esterification and trans-esterification reaction		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning,					
Approach	Library work, independent studies Presentation by individual student					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Surprise test					
	 Internal Test – Objective and descriptive answer type 					
	Submitting assignments					
	 Seminar Presentation – select a topic of choice in the concerned area and present in the seminar 					
	B. Semester End examination					

REFERENCES

- 1. F. A. Carey, R. J. Sundberg, Advanced organic chemistry part-A. 5th Edn. Springer, 2007
- 2. J. March, Advanced organic chemistry, 6th Edn. 2007
- 3. J. Clayden, N. Greeves, S Warren, P. Wothers, Organic Chemistry, Oxford University Press, Oxford, 2001
- 4. P. Sykes, A Guide Book to Mechanism in Organic Chemistry Longman, New York, 1985
- 5. T. H. Lowing, K. S. Richard, Mechanism and theory in Organic Chemistry 3rd Edn. Harper Collins Publishers. New York, 1987
- 6. J. Hine, Physical Organic chemistry, McGraw-Hil, 2nd Edn. 1962.

CSM21C06 Inorganic Chemistry Lab-I

School Name	School of Chemical S	ciences				
Programme	M.Sc.					
Course Name	Inorganic Chemistry	Lab-I				
Course Credit	2					
Type of Course	CORE					
Course Code	CSM21C06					
Course Summary & Justification	The laboratory practical course enables the students to understand and apply the lab skills and laboratory safety procedures needed to carry out standard chemistry experimental techniques. This course will facilitate the students to apply the basic concepts of inorganic chemistry to analyze the metal ions in a given sample. Through this course, the students will learn to (i) separate and identify cations in a given mixture (ii) estimate the metal ions using colorimetry (iii) perform complexometric titrations of metal ions with the double burette method (iv) separate and estimate binary mixture of metal ions using combined volumetric and colorimetric methods and (v) tabulate and analyze the results of all the experiments systematically. This course will improve the analytical skill and critical thinking including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis.					
Semester	1	I	1	I	1	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	0	0	120	30	150
Pre-requisite	A chemistry laboratory is a place of discovery and learning but at the same time, it can be a place of danger if proper common-sense precautions are not taken care of. So the students are expected to learn and follow the general safety guidelines to ensure a safe laboratory environment. Also, basic knowledge of inorganic salt analysis, colorimetric estimations and complexometric titrations is preferred.					

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Perform basic chemical lab procedures by following appropriate lab safety measures & infer the experimental results with mathematical and analytical reasoning.	U	1
2	Separation and identification of the mixture of cations in a given sample	An	2
3	Estimation of the amount of metal ion present in the whole of the given solution colorimetrically.	E	2
4	Estimation of the amount of the metal ions in the whole of the given solution using complexometric titrations.	E	2
5	Estimation of binary mixtures of metal ions in the given solution using combined volumetric and colorimetric methods.	E	2
6	Develop the skills to carry out basic quantitative and qualitative analytical techniques.	S	3
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), C est (I) and Appreciation (Ap)	Treate (C), Sl	kill (S),

COURSE CONTENT		CO No
Unit 1: Separation and identification of a mixture of two cations		1, 2, 6
Content for Classroom Transaction (Sub-units)		
Familiar cations:		
Ag ⁺ , Hg ²⁺ , Pb ²⁺ , Cu ²⁺ , Bi ²⁺ , Cd ²⁺ , As ³⁺ , Sn ²⁺ , Sb ³⁺ , Fe ²⁺ , Fe ³⁺ , Al ³⁺ , Cr ³⁺ , Zn ²⁺ , Mn ²⁺ ,		
Co^{2+} , Ni^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , Li^+ , Na^+ , K^+ and NH_4^+		
Rare earth cations:		
Tl, W, Se, Mo, Ce, Th, Ti, Zr, V, U and Li.		
Minimum five mixtures to be analyzed and recorded.		
Unit 2: Colorimetric Estimations	20	1, 3, 6
Content for Classroom Transaction (Sub-units)		
2.1. Estimation of Ferric ion by thiocyanate method		
2.2. Estimation of Copper by using diethyldithiocarbamate		
2.3. Estimation of Chromium by using diphenyl carbazide		
2.4. Estimation of Manganese by using potassium periodate		
Any two to be recorded.		
Unit 2: Complexemetric titrations	20	1, 4, 6
Unit 3: Complexometric titrations	20	1, 4, 0
Content for Classroom Transaction (Sub-units) 3.1. Estimation of Zinc		
3.2. Estimation of Nickel (direct titration)		
3.3. Estimation of Nickel (back titration)		

Unit 4: Estimation of binary mixtures of metallic ions		1, 5, 6
Content for Classroom Transaction (Sub-units)		
4.1. Estimation of binary mixtures (Cu-Ni, Cu-Zn, Fe-Cr, Fe-Cu, Fe-Ni, Pb-Ca,		
Fe-Ca) of metal ions in solution by volumetric and colorimetric		
methods. Any three to be recorded		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Authentic learning	
Assessment	Mode of Assessment	
Types	Lab/Experiment skills	
	Lab record/Report	
	Viva-voce	
	Lab Discipline (participation, punctuality, accuracy)	

REFERENCES

- 1. I. Vogel, G. Svehla, Vogel's Qualitative Inorganic Analysis, 7th Edn. Longman, 1996.
- 2. I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman 1966.
- 3. M. Koltoff, E. B. Sandell, A Text Book of Quantitative Inorganic Analysis, 3rd Edn. McMillian, 1968.
- 4. V. V. Ramanujam, Inorganic Semimicro qualitative Analysis. The National Public Co. 1974.

CSM21C07 Stereochemistry and Conformations of Organic Compounds

School Name	School of Chemical	Sciences						
Programme	M.Sc.							
Course Name	Stereochemistry and Conformations of Organic Compounds							
Course Credit	3							
Type of Course	CORE	CORE						
Course Code	CSM21C07							
Course Summary & Justification	Stereochemistry is a fundamental topic to understand the nature, property and mechanism of organic substances and processes and is inevitable to learn modern organic chemistry. Learning this course will provide a key concept of the reaction mechanism of organic reactions. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences. This course is designed at providing students with theoretical concepts of stereochemistry. Various concepts of stereochemistry such as molecular geometry, stereoisomerism, Cahn-Ingold-Prelog systems, different notations, racemization, resolution, asymmetric synthesis, configuration, conformation, anomeric effect, conformational analysis of butane, cyclohexane, decalin, stereochemistry & reactivity, stereochemistry of various reactions, all kinds of chirality, Atropisomerism, conformation & reactivity, stereoselective & stereospecific reactions, chiroptical properties such as ORD, CD and quadrant rule will be discussed. Students will be able to use stereochemical aspects to understand reaction mechanisms and to							
Semester	1							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning, Collaborative learning, Independent learning	40	40	0	40	120		
Pre-requisite	Basics of Organic che reaction pathways.	mistry inc	luding basi	c concepts	of hybrid	isation and		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the basic concepts of symmetry elements and stereochemical aspects to assign notation of molecules and to predict the stereochemistry of products of reactions.	U	1
2	Assign R/S and E/Z notation for stereoisomers and to distinguish between enantiomers and diastereomers.	U	3
3	Calculate ee or de of stereoselective reaction to get a good understanding of asymmetric synthesis and absolute configuration.	A	2
4	Distinguish between various kinds of chirality, and predict the stereochemistry of cycloaddition reactions.	A	3
5	Able to predict the stereochemistry of products of asymmetric reactions.	A	6
6	Distinguish between stereoselective and stereospecific reactions and predict the regio- and stereochemistry of products of Aldol reactions.	S	6, 7
7	Able to predict the sign of ORD/CD of optically active compounds	А	4, 6
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Creat est (I) and Appreciation (Ap)	e (C), Skill (S	5),

COURSE CONTENT	Hours	CO No
Unit 1: Molecular geometry and Chemical bonding	8	1
Rotation around bonds, Concepts of dihedral angle, Torsion strain, Molecular		
symmetry and chirality, Symmetry operations, Symmetry elements.		
Unit 2: Stereoisomerism	10	2
Conformation and chirality, Centre of chirality, Molecules with a single chiral centre, Cahn Ingold Prelog system, D & L, R & S, E & Z Configurations-Molecules with two or more chiral centres, Enantiomers and diastereomers.		
Unit 3: Racemization and Resolution	10	2, 3
Asymmetric transformations and mutarotation, Optical purity and enantiomeric excess, Calculations of <i>ee</i> and <i>de</i> , Determination of configuration, Methods based on NMR spectroscopy, chemical transformations Asymmetric synthesis, Relative and absolute configurations, Relative configuration of diastereomers,	10	2, 3
Auwers Skita rule, NOE, Enzymatic resolution and desymmetrization, Anomeric effect.		
Unit 4: Conformational analysis	6	4, 5
Conformations of butane, propene, butanone, butadiene, Cyclohexanes, Decalines, Heteroatom hyperconjugation, anomeric effect and its theories, Stereochemistry and reactivity of steroids, Stereochemistry of addition and elimination reactions, Chirality in molecules devoid of chiral centres, Axial chirality, Planar chirality, Helicity, Stereochemistry of allennes, spiranes, biphenyls, helicenes, cyclophanes, annulenes, Atropisomerism, Topicity and pro stereoisomerism-topicity of ligands and faces, Stereochemistry in cycloaddition reactions.		

Unit 5: Conformation and Reactivity Quantitative correlation between conformation and reactivity, Curtin- Hammett principle, Conformation and reactivity applied to substitution, elimination and addition reactions.	4	4, 5
Unit 6: Stereoselective reactions Stereoselective and stereospecific reactions, Double stereo-differenciation, Enantioselective synthesis, Reactions of nucleophilic carbon, Generation of carbanions by deprotonation, Formation of enolates-regio and stereochemical considerations, Alkylation of enolates-dianion formation and alkylations reactions-Reactions of silyl enol ethers, Enamines and imine anions, Conjugate addition of carbon nucleophiles, Aldol reactions-Regio and stereochemistry, Intramolecular aldol condensation, Zimmerman-Traxler transition state, Organoboranes-formation and reactions-Formation of alcohols, ketones aldehydes and amines from organo boranes, Enantioselective hydroboration-hydroboration of alkynes, Asymmetric epoxidation-Sharpless epoxidation-Allylic oxidation.	12	5, 6
Unit 7: Molecular Symmetry and chiroptical properties ORD and CD, α -Haloketone rule, Octant rule applied to cyclohexanones, Conformation and reactivity, Classical and non-classical carbocations.	10	7

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative.
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test – One MCQ based and on extended answer type Book review – every student to review a seminal work on Alternative Education and submit a report Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Field visit report – each student shall individually or in group visit an institution with demonstrated experience of alternative thoughts and prepare a report B. Semester End examination

- 1. E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of organic compounds, John Wiley, 2003
- 2. D. Nasipuri, Stereochemistry of organic compounds, New age international publishers, New Delhi 2004

SUGGESTED READINGS

- 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Part A, 5th Edn. Springer, 2007
- 2. P. S. Kalsi, Stereochemistry Conformation and mechanism, Wiley Eastern, New Delhi, 1990

CSM21C12 Structural and Solid-State Chemistry

School Name	School of Chemical S	ciences						
Programme	M.Sc.							
Course Name	Structural and Solid-	Structural and Solid-State Chemistry						
Course Credit	3	3						
Type of Course	CORE							
Course Code	CSM21C12							
Course Summary & Justification	composition, structures possible to acquire rele develop an understand scientific and technolog foundation in the key c students to develop a h material design in scien	The study of Structural and Solid-State Chemistry unravels the basic composition, structures, and properties of solids. Through this learning, it is possible to acquire relevant conceptual and procedural knowledge and to develop an understanding and appreciation of developments in various scientific and technological fields. Learning this course will provide a strong foundation in the key concepts of Solid-State Chemistry, which will help the students to develop a holistic view of elemental composition, structure and material design in science and technology. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences.						
Semester	=							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120		
Pre-requisite	Basic knowledge about	chemistry	at the Back	nelor's level				

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the fundamentals of crystallography, crystal systems, symmetry operations, point groups and space groups as an	U	1
	introduction to the concepts of underlying Solid-State Chemistry		
2	Elucidate the crystal structure using X-ray diffraction and correlate the XRD information with crystal structure	A	1
3	Analyze and understand the structure of AX, AX ₂ , AO ₂ , AO ₃ , A ₂ O ₃ , ABO ₃ , AB ₂ O ₄ type compounds, perovskites, spinels and inverse spinels	U, An	2, 3
4	Gain insight into the crystal structure, close packing and crystal defects	U	1, 2,
	in solids		3

5	Explain and rationalize the electronic, magnetic and electrical	U	
	properties of solids		
6	Build a perspective on preparative methods in solid state chemistry and	U, An	6, 7
	to understand the various thermal analysis methods to interpret		
	thermograms and phase diagrams of various systems		
7	Gather a comprehensive idea about Low dimensional solids and get	U	6, 7
	familiarized with their unique properties, size effect, and applications		
	in multi-disciplinary fields		
*Ren	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Cr	eate (C), S	kill (S),
	rest (I) and Appreciation (Ap)		

COURSE CONTENT	Hours	CO No.
 Unit 1: Crystallography Content for Classroom Transaction (Sub-units) 1.1. Classification of solids, lattices and unit cells, crystal systems, Bravais lattices 1.2. Crystal directions and planes Crystal symmetry-symmetry elements and operations, translational symmetry elements 1.3. Point groups, space groups, reciprocal lattices 	10	1
 Unit 2: X-ray diffraction 2.2. Bragg law, systematic absences, identification of compounds using powder diffraction 2.3. Rietveld refinement, basics of neutron diffraction, elements of electron microscopy 	10	2
 Unit 3: Close packing, Crystal structure and Crystal defects 3.2. Hcp and ccp, packing efficiency, radius ratio, coordination number, lattice energy, Born- Haber cycle 3.3. Structure of AX, AX₂. AO₂, AO₃, A₂O₃, ABO₃, AB₂O₄ type compounds, Perovskites, spinels and inverse spinals 3.4. Covalent solids, metals, alloys, solid solutions, interstitial compounds elements 3.5. Crystal defects and non-stoichiometry 3.6. Sharing of polyhedra, structure of silicates, 	15	3, 4
 Unit 4: Electronic properties of solids 4.2. Band theory, k-space, Brillouin zones, band structure, Fermi level, Fermi energy, density of states 4.3. Metals, insulators, semiconductors-types and structures, super conduction 	6	5
Unit 5: Magnetic properties of solids5.2. Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, anti- ferromagnetism, permanent magnets	6	5
Unit 6: Electrical properties 6.2. Ferroelectric, pyroelectric and piezoelectric	4	5

Unit 7: Preparative methods and Thermal analysis methods in solid state	6	6
chemistry		
7.1. Solid state reactions, solid state kinetics		
7.2. Thermal analysis- Thermogravimetry (TG), Differential Thermal		
Analysis (DTA) and Differential Scanning Calorimetry (DSC)		
Unit 8: Low-dimensional solids	3	7
8.1 Fullerenes, quantum dots, nanotubes and nanowire		

Teaching and Learning Approach	Classroom Procedure: Learning Approach Consists of Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests, Blended learning, Quizzes
Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	Internal Test
	 Seminar Presentation on a related topic and review a
	journal paper in a particular area and present before
	peers
	B. Semester End examination

SUGGESTED READINGS

- 1. R. West, Solid State Chemistry and its Applications, John-Wiley, 1984.
- 2. R. C. Buchanan, T. Park, Materials Crystal Chemistry, Marcel Dekker, 1997.
- 3. S. E. Dann, Reactions and Characterization of Solids, RSC, 2000.
- 4. L. A. Smart, E. A. Moore, Solid State Chemistry: An introduction, 3rd Edn. CRC Press, 2005.
- 5. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, 5th Edn. Oxford University Press, 2010.
- N. R. Rao, J. Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edn. Cambridge University Press, 2004.

CSM21C13 Photochemistry and Pericyclic Reactions

School Name	School of Chemical Sc	iences					
Programme	M.Sc.						
Course Name	Photochemistry and F	Pericyclic F	Reactions				
Course Credit	3						
Type of Course	CORE						
Course Code	CSM21C13						
Course Summary and Justification	This course essentially encompasses two components. The first component is the advanced course materials on photochemical and photophysical processes and their applications. Here some modern instruments which work under the principle of photochemistry are discussed to get an understanding of the present and possible future applications of photochemistry. In addition, a concise discussion on reactive intermediates like singlet oxygen, carbenes and nitrenes is also included as an application of photochemistry. In the second part, pericyclic reactions are discussed with an emphasis on light-initiated and heat-initiated reactions and their different outcome. Most common and complex pericyclic reactions are discussed to get an understanding of the synthetic utility of this technique while designing complex molecules. Therefore, the second part gives an advanced know-how on synthetic organic chemistry with an added stress on photochemical pathways.						
Semester	II	[
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
	Others include Research, fieldwork, Independent Learning, etc.	40	40	0	40	120	
Credit Value & Course Status	3	Core Course					
Pre-requisite	Basics of Organic Chemi	stry, steroe	chemistry	and reactio	n mechan	isms	

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Learn basic concepts of organic photochemistry and pericyclic reactions.	U	1, 2
2	Understand the reaction mechanism of organic photochemical	U	1, 2
	reactions and pericyclic reactions.		

3	Predict the product of a reaction under photochemical or thermal	А	2, 3	
	conditions.			
4	Develop the skill to propose the possible mechanism of a given	S	2, 5,	
	photochemical or pericyclic reaction.		6	
5	5 Gain knowledge of the synthetic applications of organic photochemical		3, 6	
	reactions and pericyclic reactions.			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Inter	rest (I) and Appreciation (Ap)			

COURSE CONTENT	Hours	CO No.
Unit 1: Photochemistry	30	1-5
Content for Classroom Transaction (Sub-units)	30	1-2
1.1. Photochemical energy plank Condon Principle, Jablonski diagram		
singlet and triplet states, dissipation of photochemical energy,		
photosensitization, quenching, quantum efficiency and quantum yield		
1.2. Photochemistry of alkenes-Photochemical reactions involving <i>cis</i> -		
trans isomerisation		
1.3. Photochemistry of carbonyl compounds-Saturated and unsaturated		
ketones, Enones and Dienones, compounds $n-\pi$, $\pi-\pi*$ transitions		
Norrish type I and Norrish type II cleavages, di- p -methane		
rearrangement		
1.4. Photochemistry of aromatic compounds-Rearrangement of aromatic		
compounds, Barton's Reaction, Photofragmentation, Photoaddition,		
Photo substitution		
1.5. Cycloaddition - Paterno- Buchi reaction, DeMayo reaction		
1.6. Singlet oxygen generation		
1.7. Photoinduced electron transfer and energy transfer reactions (PET),		
Marcus theory of photochemistry, Photochemical Generation		
1.8. Structure and reactivity of carbenes and nitrenes		
1.9. Photochemistry of nanomaterials and quantum dots		
1.10. Single molecule photochemistry		
Unit 2: Pericyclic Reactions	30	1-5
Content for Classroom Transaction (Sub-units)	50	13
2.1. Classification of Pericyclic reactions- electrocyclic, cycloaddition and		
sigmatropic reactions		
2.2. Stereochemical aspects of pericyclic reactions		
2.3. Symmetry properties of molecular orbitals		
2.4. Correlation diagrams		
2.5. Woodward Hoffman rules		
2.6. Analysis of Pericyclic reactions using Frontier Molecular Orbital (FMO)		
2.7. Perturbational Molecular Orbital (PMO) theories		
2.8. Exo–Endo selectivity in Diels-Alder reactions		
2.9. Applications of pericyclic reactions		

Teaching and	Classroom Procedure: Learning Approach Consists of						
Learning	Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning						
Approach	Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests,						
	Blended learning, Quizzes						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	 Assignment 						
	Seminar						
	Performance during tutorial						
	Internal examination/Viva voce						
	B. Semester End examination						

References

- 1. R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag Chemie, Weiheim and Academic Press, New York, 1970
- 2. G. B. Gill, M.R. Wills, Pericyclic Reactions, Chapman and Hall Chemistry Text Book Series, 1974
- 3. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London 1976.
- 4. S. M. Mukerji, Pericyclic Reactions A Mechanistic Study, Mac Millan Company of India Ltd., New Delhi, 1979.
- 5. R. E. Lehr, A. P. Marchand, Orbital Symmetry, A Problem-solving Approach, Academic Press, 1972
- 6. K. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, Wiley Eastern Ltd., New Delhi, 1978
- 7. M. Persico, G. Granucci, Photochemistry: A Modern Theoretical Perspective (Theoretical Chemistry and Computational Modelling), SpringerLink, 2018.
- 8. Literature reviews

CSM21C14 Spectroscopic Methods in Chemistry

School Name	School of Chemical S	Sciences				
Programme	M.Sc.					
Course Name	Spectroscopic Methe	ods in Che	mistry			
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C14					
Course Summary & Justification	properties of new co spectroscopy is inevit medical fields, chemic strong foundation in t the students to identif the characterization o enable the students to This course is designed various spectroscopic the molecular and elec of light with molecule	Spectroscopic tools are significant to characterize the structure and properties of new compounds designed for various applications. Thus, spectroscopy is inevitable in areas of chemistry, physics, biochemistry, medical fields, chemical industry, etc. Learning this course will provide a strong foundation in the key concepts of spectroscopy and which will help the students to identify the use of appropriate spectroscopic techniques for the characterization of various molecules. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences. This course is designed at providing students with practical applications of various spectroscopic techniques, i.e., UV-vis., IR, NMR, and mass to analyse the molecular and electronic structure of atoms and molecules. Interaction of light with molecules and spectral transitions will be discussed. Students will be able to use these techniques for the characterization of various				
Semester	II	•				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Bachelors degree in subsidiaries.	chemistry	, with p	nysics and	mather	natics as

СО	Expected Course Outcome		PSO
No.		Domains	No.
1	Acquires the ability to synthesize, and characterize compounds using	U	1, 3, 4,
	laboratory and instrumentation techniques.		6, 7
2	To expose the students to a level of handling experimental	А	1, 3
	techniques using modern instrumentation.		

3	Analyze the data obtained from sophisticated instruments (like FTIR, NMR, GCMS, HPLC, GCMS UV-Vis, Fluorescence, and TGA) for structure determination and chemical analysis.	Ар	2, 4, 6			
4	Analyses and explains the structure of atoms and molecules, presence of functional groups using various spectral data.	A	1, 4,			
5	Work in the interdisciplinary and multidisciplinary areas of chemical sciences and its applications.	U	2, 3			
6	(i) Be able to work productively and collaboratively as a team member by solving problems with other students. (ii) Evaluate the potential impact of various analytical techniques on society, health and the environment.	U	2, 3, 5			
7	Apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and industries.	С	3			
8	Providing students with the skills required to succeed in master program also enrich them with basic skill to perform in R & D chemical industrial level	E	2			
*Ren	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Inter	est (I) and Appreciation (Ap)					

COURSE CONTENT	Hours	CO No
Unit 1: Ultraviolet-visible and Chirooptical Spectroscopy	12	1 - 5
1.1. Energy levels and selection rules		
1.2. Woodward-Fieser and Fieser-Kuhn rules.		
1.3. Influence of substituent, ring size and strain on spectral characteristics.		
1.4. Solvent effect, stereochemical effect, and non-conjugated interactions.		
1.5. Chirooptical properties-ORD, CD, octant rule, axial haloketone rule,		
Cotton effect.		
Unit 2: Infrared Spectroscopy	10	1-5
2.1. Fundamental vibrations, characteristic regions of the spectrum (fingerprint and functional group regions)		
2.2. Influence of substituent, ring size, hydrogen bonding, vibrational coupling and field effect on frequency, determination of stereochemistry by IR technique.		
2.3. IR spectra of C=C bonds (olefins and arenes) and C=O bonds.		

Unit 3: Nuclear N	Aagnetic Resonance Spectroscopy	16	1-5		
	nuclei with special reference to ¹ H and ¹³ C nuclei.				
	shift and shielding/deshielding, factors affecting chemical				
shift, rela	xation processes, chemical and magnetic non-equivalence,				
	nagnetic shielding and magnetic anisotropy.				
3.3. ¹ H and ¹³	CNMR scales. Spin-spin splitting: AX, AX ₂ , AX ₃ , A ₂ X ₃ , AB, ABC,				
	e coupling,				
	er and non-first order spectra, Pascal's triangle, coupling				
	mechanism of coupling, Karplus curve, quadrupole				
	ng and decoupling, diastereomeric protons, virtual				
	long-range coupling-epi, peri and bay effects.				
	cross-polarization. Simplification of non-first order spectra				
	rder spectra: shift reagents, spin decoupling and double				
	e, off-resonance decoupling.				
	shifts and homonuclear/heteronuclear couplings. Basis of				
	clear Decoupling				
3.7. DEPT					
	and COSY, HOMOCOSY, HETEROCOSY and NOESY.				
	on transfer.				
3.9. Selective	Population Inversion.				
3.10. 3	-D NMR NOESY-HSQC and TOCSY-HSQC, HMQC				
Unit 4: Mass Spee	ctrometry				
4.1. Ion produ	uction methods: Electron ionization (EI), chemical ionization	12	1-5		
(CI), Soft	ionization methods: SIMS, FAB, MALDI, and DI; electron				
	ization (ESI).				
4.2. Mass ana	lysis: magnetic sector mass analyzer, double-focusing mass				
analyzer,	Quadrapole mass analyzer, time-of-flight mass analyzer				
4.3. Fragmen	tation patterns-nitrogen and ring rules. McLafferty				
rearrange	ement and its applications. HRMS, MS-MS, LC-MS, GC-MS.				
Unit 5. Structural	elucidation using spectroscopic techniques	10	3, 5, 6,		
5.1. Identifica	tion of structures of organic and inorganic compounds		7, 8		
based or	the data UV-Vis, IR, 1 H NMR, 13 C NMR, EPR, and Mass				
spectroso	spectroscopy.				
5.2. Interpret	ation of the given UV-vis., IR and NMR spectra.				
Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Direct Instruction : Brainstorming lecture, Explicit Teaching,	F-learnin	σ		
Approach	Interactive Instruction : Active co-operative learning,		-		
Approach interactive instruction. Active to operative learning, Seminar, Group					

Learning	Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning						
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group						
	Assignments Authentic learning, Library work and Group discussion,						
	Presentation by individual student/ Group representative						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	 Internal Test – On MCQ based and extended answer type 						
	 Seminar Presentation – a theme is to be discussed and 						
	identified to prepare a paper and present in the seminar						
	B. End semester examination						

1. L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, 3rd Edn. Brooks Cole, 2000.

- 2. R. S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 3. W. Kemp, Organic Spectroscopy, 2nd Edn. Macmillan, 1987.

SUGGESTED READINGS

- 1. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to Spectroscopy, 3rd Edn. Brooks Cole, 2000.
- 2. R. S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 3. W. Kemp, Organic Spectroscopy, 2nd Edn. Macmillan, 1987.
- 4. B. Wilson Jr., J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Pub., 1980.
- 5. F. Taber, Organic Spectroscopic Structure Determination: A Problem Based Learning Approach, Oxford University Press, 2007.
- 6. R. M. Silverstein, G. C. Bassler, T. C. Morril, Spectroscopic Identification of Organic Compounds, 5th Edn. Wiley, 1991.
- 7. U. Rahman, M. I. Choudhary, Solving Problems with NMR Spectroscopy, Academic Press, 1996.
- 8. Online spectral databases including RIO-DB.

CSM21C15 Physical Chemistry Lab-1

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Physical Chemistry L	Physical Chemistry Lab-1				
Course Credit	2					
Type of Course	CORE					
Course Code	CSM21C15					
Course Summary	To have hands-on ex	perience w	ith techniq	ues for vei	rifying ph	ysical and
& Justification	chemical properties					
Semester	II					
Total	Learning Approach	Lecture	Tutorial	Practical	Others	Total
StudentLearningT						Learning
ime (SLT)						Hours
	Authentic learning					
	Collaborative	0	0	120	30	150
	learning					
	Independent					
	learning					
Pre-requisite	Bachelors degree ir	n chemistr	y, with p	hysics and	d mather	natics as
	subsidiaries.					

СО	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
1	To experiment on various instrumental techniques.	A	1, 4, 6		
2	To measure various physical and chemical properties.	А	2		
3	To describe the principles behind the experiment performed in the laboratory.	Ар	1		
4	To interpret the experimental results obtained by various techniques.	An	4		
5	To understand the principles behind the experiment performed in the laboratory.	U	5		
6	The students will acquire knowledge of experimental techniques for controlling the chemical reactions.	С	1, 3, 7		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: SURFACE CHEMISTRY	20	1-6
1.1. Study the adsorption of acetic acid by activated charcoal and verify the		
Langmuir and Freundlich adsorption isotherms.		
Unit 2: CHEMICAL KINETICS	16	1-6
2.1. Study the kinetics of the acid-catalysed hydrolysis of methyl acetate		
and evaluate the value of the rate constant		
2.2. Evaluate the activation energy for the acid catalysed hydrolysis of		
methyl acetate		
Unit 3: PHASE EQUILIBRIA		
3.1. Determine the transition temperature of the given salt hydrate	20	1-6
3.2. Determine the CST of phenol-water system		
3.3. Role of an electrolyte on the CST of phenol-water system.		
Unit 4: THERMODYNAMIC PROPERTIES OF SOLUTION	12	1-6
4.1. Determine the partition coefficient for the distribution of succinic acid	12	1-0
between water and 1-butanol.		
4.2. Determination of partition coefficient of benzoic acid between toluene		
and water.		
Unit 5: CONDUCTOMETRY		
5.1. Determination of cell constant	8	1-6
5.2. Verification of Onsager equation and determine the equivalent		
conductance at infinite dilution of strong electrolyte		
5.3. Determine the concentration of the given strong acid by		
conductometric titration with a strong base		
Unit 6: pH MEASUREMENTS		
6.1. Determine the concentration of the given acid by pH measurements.	20	1-6
6.2. Determine the isoelectric point of the given amino acid by pH		
measurements		
Unit 7: OPTICAL MEASUREMENTS IN CHEMISTRY	24	1-6
7.1. Determine the refractive index of the given liquid by Abbe		
refractometer, and hence the specific and molar refraction		
7.2. Determine the molar refractivity of water, methanol, acetic acid,		
ethylacetate, 1, 4-carbon tetrachloride and calculate the refraction		
equivalents of C, H, O and Cl.		
7.3. Determine the specific, molecular and intrinsic rotations of the given		
optically active substance.		
7.4. Determine the concentration of the unknown solution of the optically		
active compound by polarimetric measurements.		
7.5. To study the kinetics of inversion of cane sugar by optical rotation		
measurement		

Teaching and	assroom Procedure (Mode of transaction)				
Learning	Interactive Instruction: Active co-operative learning, Seminar, Group				
Approach	Assignments Authentic learning, Library work and Group discussion on the				
	theoretical back ground of the experiments to be carried out. Presentation by				
	individual student/ Group representative				

Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	 Seminar Presentation – theory of each experiment to be discussed and present in the seminar 			
	Viva-voce examination			
	B. End semester examination			

References

- 1. D. P. Shoemaker, C. W. Garland, J. I. Steinfeld Experiments in Physical Chemistry, 3rd Edn. McGraw-Hill, 1967.
- 2. B. Viswanathan, P. S. Raghavan, Practical Physical Chemistry, Viva Books Pvt. Ltd. New Delhi, 2005.
- 3. J. B. Yadav, Advanced Practical Physical Chemistry, 29th Edn. 2010, Krishna Prakashan Media Pvt. Ltd. Meerut.

CSM21C16 Organic Chemistry Lab-1

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Organic Chemistry	Lab-1				
Course Credit	2					
Type of Course	CORE					
Course Code	CSM21C16					
Summary & Justification	measures to be take equipment used, sep mixture organic cor analysing the separat be introduced to the	This course is designed to give the student awareness about the safety measures to be taken in the lab, familiarise the different glassware and equipment used, separation of the components presents in the given binary mixture organic compounds using appropriate separation methods and analysing the separated components using standard procedure. Students will be introduced to the structure, reactivity, and analysis of organic molecules. Preparation of different organic molecules from simple molecules is also included in the course.				
Semester	=	-		-		
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	0	0	120	30	150
Pre-requisite	Basic knowledge in p	ractical orga	anic chemis	stry		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
-		Domains	-
1	Learn how to handle organic chemicals, glassware and precautions to	U	1, 2,
	be taken for safety in a Chemistry lab		3
2	Able to separate the components from a mixture using suitable	U <i>,</i> A	1, 4,
	methods and analyse the components using various reagents and		5
	reactions.		
3	Able to perform experiments individually and gain knowledge about	An	2, 3
	principles and techniques involved in various experiments		
4	Evaluate the properties of synthesized compounds through	U, An, E	2, 3,
	spectroscopic and analytical data		7
5	Analyse the mechanisms of the reactions in the experiment	С, Ѕ, Ар	2, 3,
	performed.		6,7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
UNIT 1: ORGANIC ANALYSIS	80	1, 2, 3, 5
Content for Laboratory Transaction (Sub-units)		
1.1 Organic analysis-separation of two-component mixtures		
1.2 Identification of individual components.		
1.3 Separation, Purification and analysis of the components		
1.4 Preparation of their derivatives.		
1.5 Determination of physical constants of the components and its		
derivatives		
1.6 Preparation of simple organic molecules and identification using		
Physical methods		
UNIT 2: ORGANIC PREPARATIONS	40	1, 3, 4
Content for Laboratory Transaction (Sub-units)		
2.1 Preparation of simple organic molecules		
2.2 Characterisation of the prepared compounds by determining		
m.p/b.p, chromatographic and spectroscopic techniques		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning, Library work, independent studies Presentation by individual student			
Assessment	Mode of Assessment			
Types	Lab/Experiment skills			
	Lab record/Report			
	Viva-voce			
	Lab Discipline (participation, punctuality, accuracy)			

REFERENCES

- 1. I. Vogel, B. S. Furniss, Vogel's Text Book of Practical Organic Chemistry, 5th Edn. 1989.
- 2. B. Dey, M. V. Sitaraman, T. R. Govindachari, Laboratory Mole of Organic Chemistry, Allied Publishers, 1992.
- 2. M. P. Doyle, W. S. Mungall, Experimental Organic Chemistry, John Wiley & Sons, 1980.
- 3. F. G. Mann, B. C. Saunders, Practical Organic Chemistry, 4th Edn. Pearson Education, 2009.

CSM21C17 Reactions and Reagents in Organic Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Reactions and Reagents in Organic Chemistry					
Course Credit	3	3				
Type of Course	CORE					
Course Code	CSM21C17					
Course Summary & Justification	Understanding reacti study. This enables needed to carry out organic chemistry. Le reaction mechanism. work in frontier areas This course is designed organic reactions ar beneficial in medicina	to underst a reaction earning this Understand of multidis ed to provid nd their ap	and the v and is ine course wil ling this sul ciplinary so de students plications.	arious reag witable to d l provide a oject will en ciences. s with a goo This know	gents and understan key conce able the s od unders vledge wil	reactions d modern ept of the tudents to tanding of
Semester Total Student Learning Time (SLT)	II Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Basics of Organic cher and reaction pathway	-	ding basic (concepts of	stereoche	emistry

CO No.	Expected Course Outcome		PSO No.
1	Acquires the ability to design reactions.	U	1
2	Acquires the skill to propose the mechanism of reactions.	U	3
3	Students will be able to predict suitable reaction conditions to carry out organic reactions.	A	2, 3, 4
4	Acquires the knowledge to transform molecules using functional group interconversions.	A	4, 5
5	Work in the interdisciplinary and multidisciplinary areas of chemical sciences and its applications.	A	6, 7

6	Be able to work productively and collaboratively as a team member by	S	5, 6,
	solving problems with other students.		7
7	Provide students with the skills required to succeed in master program and enrich them with a basic skill to perform at R & D chemical industrial level.	A	4-7
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), C rest (I) and Appreciation (Ap)	reate (C), S	kill (S),

COURSE CONTENT	Hours	CO No
Unit 1: Carbanion Chemistry Robinson annulation, Condensation involving imine and iminium ions, Mannich and Knoevenagel reactions, Acylation of trimethylsilyl carbanions, Peterson carbanions, Wittig reaction, Sulfur ylides, Darzens reaction, Acyl anion equivalents-lithio-1,3-dithianaes, Umpolung.	8	1, 2
Unit 2: Organometallic Chemistry Organo- lithium and magnesium reagents - Formation and reactions, Organozinc reagents- Reformatsky reaction, Organocopper intermediates, Organopalladium reagents, Vinylation of aryl and alkenyl halides, Use of Organo Li, Cu, Cd, Hg, B, P, Si reagents in organic synthesis	12	2, 3
Unit 3: Electrophilic ReactionsElectrophilic reactions of C-C multiple bonds, Oxymercuration,Iodolactonization, selenolactonization, Cycloaddition induced by electrophilicsulfur reagents, α-halogenation,sulfenylation and selenylation ofcarbonyl compounds, Hydration of alkynes.	12	4, 5
Unit 4: Oxidation Reactions Oxidation Reactions- Oxidation of C-C and C=C to oxiranes, 1,2-diols and carbonyl compounds, Oxidative cleavage-Ozonolysis, Singlet oxygen, Oxidation of alcohols to ketones, Oxidative rearrangements to ketones, Considerations of the selectivity of common reagents for oxidation- B ₂ H ₆ /H ₂ O ₂ peracids, SeO ₂ , Quinones, Tl ³⁺ , CrO ₃ , KMnO ₄ , MnO ₂ , OsO ₄ , AgOAc/I ₂ , Cu(OAc) ₂ , NalO ₄ , DMSO.	14	5, 6, 7
Unit 5: Reduction Reactions Reduction Reactions-Catalytic hydrogenation, Hydrogenation of C-C multiple bonds-Birch reduction, Diborane and alkyl boranes, Reduction of aldehydes, ketones and carboxylic acid derivatives with hydrides-Reduction with N ₂ H ₄ and N ₂ H ₂ , Wolff-Kishner type reduction, Barton olefin synthesis, McMurry coupling, Pinacol coupling, General consideration on the selectivity of common reagents for reduction.	14	5, 6, 7

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning,					
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments Authentic learning, Library work and Group discussion,					
	Presentation by individual student/ Group representative					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	 Internal Test – One MCQ based and one extended answer type 					
	 Book review – every student to review a seminal work on 					
	Alternative Education and submit a report					
	• Seminar Presentation – a theme is to be discussed and identified					
	to prepare a paper and present in the seminar					
	• Field visit report – each student shall individually or in a group					
	visit an institution with demonstrated experience of alternative					
	thoughts and prepare a report					
	B. Semester End examination					

- 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Part A, Springer, 2007
- 2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B, Springer, 2007
- 3. H. O. House, W. A. Benjamin, Modern Synthetic Reactions, 2nd Edn. Inc, Mento Park, 1972.
- 4. J. March, Advanced Organic Chemistry, 4th Edn. Wiley India, New Delhi, 2005
- 5. R O C Norman, J. M. Coxon, Principles of Organic Synthesis, 3rd Edn. Blackie Academic, 1993
- 6. M. Fieser, J. G. Smith, Reagents for Organic Synthesis Wiley New York, 1988, All volumes
- 7. M. Hudlicky, Oxidations in Organic Chemistry American Chemical Society, 1990
- 8. M. Hudlicky, Reductions in Organic Chemistry, Ellis Horwood, 1986

SUGGESTED READINGS

1. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Oxford University Press, 2014

CSM21C21 Organometallic Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Organometallic Ch	emistry				
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C21					
Course Summary & Justification	an emphasis on tran the structure and bo bonded and π-bonde shown by organome highlights the applica important.	This course introduces the basic concepts of organometallic chemistry with an emphasis on transition metal complexes. The students will understand the structure and bonding of organometallic complexes bearing various σ - bonded and π -bonded ligands. They will learn about the unique reactions shown by organometallic compounds and their mechanism. This course highlights the application of organometallics in catalysis which is industrially important.				
Semester					0.1	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	Basic knowledge of I	norganic Cł	nemistry			

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the fundamental concepts of organometallic complexes such as the 18-electron rule.	U	1
2	Explain and rationalize the structure and bonding of organometallic compounds with σ - and π -bonded ligands	U	1
3	Apply spectroscopic techniques to characterize organometallic compounds	A	2, 7
4	Identify the fundamental reactions of organometallic compounds and their mechanism.	An	3
5	Describe the application of organometallics in catalysis	А	3, 7
6	Design new organometallic complexes that have application in catalysis.	С	6, 7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No.
Unit 1: Introduction to Organometallic Chemistry	5	1
Content for Classroom Transaction (Sub-units)		
1.1. Classification and nomenclature		
1.2. Concept of hapticity		
1.3. Structure prediction based on 18-electron rule		
1.4. 16-electron compounds		
Unit 2- Structure and bonding in organometallics	10	1, 2
Content for Classroom Transaction (Sub-units)		
2.1. Synthesis, structure, bonding and IR spectra of metal carbonyls		
2.2. Carbonylate ions		
2.3. Carbonyl Hydride Complexe		
2.4. Polynuclear carbonyls		
2.5. Metal nitrosyls		
2.6. Metal cyanides		
2.7. Metal phosphines and biphosphines		
2.8. Metal dioxygen and dinitrogen complexes		
 characterization of these compounds using spectroscopic techniques Content for Classroom Transaction (Sub-units) 3.1. Structure and bonding of complexes with chain pi-donor ligands: olefins, acetylenes, pi-allyl complexes 3.2. Metal-carbenes and metal-carbynes 3.3. Structure and bonding of complexes with cyclic pi-donors: cyclobutadiene, cyclopentadiene, benzene, cycloheptatriene and cyclooctatetraene 3.4. Structure, bonding and reactions of ferrocene 3.5. Metallocenes -Sandwich and half-sandwich compounds 3.6. Stereochemically non-rigid molecules 3.7. Fluxionality in organometallic compounds and characterization using NMR spectroscopy 		
Unit 4: Metal Clusters	10	2
Content for Classroom Transaction (Sub-units)		_
4.1. Di-nuclear clusters		
4.2. Multinuclear clusters: low and high nuclearity clusters		
4.3. Electron counting schemes of multinuclear carbonyl clusters		
4.4. Capping rules	1	
4.4. Capping rules 4.5. The isolobal concept		
4.4. Capping rules 4.5. The isolobal concept 4.6. Structural prediction of organometallic clusters		

Unit 5: Reactions of Organometallic Complexes	10	4
Content for Classroom Transaction (Sub-units)		
5.1. Ligand substitution reactions in organometallic complexes		
5.2. Oxidative addition and reductive elimination reactions		
5.3. Migratory insertion reactions: 1,1-migratory insertion reaction and 1.2-insertion		
5.4. β -hydride elimination reactions		
5.5. Cyclometallation reactions, orthometallation, oxidative coupling and metallacycles		
5.6. Nucleophilic attack of coordinated ligands		
Unit 6: Catalysis by Organometallic Compounds	10	4, 5
Content for Classroom Transaction (Sub-units)		
6.1. Alkene hydrogenation (Wilkinson's catalyst)		
6.2. Monsanto process		
6.3. Water-gas shift reaction		
6.4. Hydro-formylation reactions		
6.5. Wacker process		
6.6. Ziegler-Natta polymerization of alkenes		
6.7. Fischer-Tropsch process		
6.8. Alkene metathesis		
6.9. Oligomerisation of alkenes and alkynes		
Unit 7: Applications of Organometallic Chemistry	3	6
Content for Classroom Transaction (Sub-units)		
7.1. Organometallics in the industry		
7.2. Organometallics in medicine-drugs, radiopharmaceuticals, tracers		
7.3. Organometallics in agriculture		
7.4. Organometallics in environmental science		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar/ Presentation by individual student, Assignments, Authentic learning, Quizzes				
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test – MCQ based and descriptive answer type Seminar Presentation – the students will be given individual topics for seminar presentation Assignments Quizzes B. Semester End examination 				

- 1. R. H. Crabtree, The organometallic Chemistry of Transition Metals, 4th Edn. John Wiley, 2005.
- J. P. Collman, L. G. Hegedus, J. R. Norton, R. G. Finke. Principles and Applications of Organotransition Metal Chemistry, Oxford University Press, 2nd Edn.

- 3. J. E. Huheey. R. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity, 4thEdn. Prentice Hall, 1997.
- 4. F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Edn. Wiley-Interscience, 1999.
- 5. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver and Atkins, Inorganic Chemistry, 4thEdn. Oxford University Press, 2006.
- 6. J. D. Atwood, Inorganic and Organometallic Reaction Mechanism, Wiley-VCH, 1997.
- 7. E. Douglas, D. H. McDaniel, J. J. Alexander. Concepts and Models of Inorganic Chemistry, 3rd Edn. Wiley-India, 2007.
- 8. M. Bochmann, Organometallics and Catalysis: An Introduction, Oxford University Press, 2014.
- 9. W. K. Li, G. D. Zhou, T. Mak, Advanced Structural Inorganic Chemistry, Oxford University Press, 2008.
- 10. D. Gupta, A. J. Elias, Basis Organometallic Chemistry, Universities Press, 2013.

CSM21C22 Analytical and Nuclear Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Analytical and Nucle	ear Chemi	stry			
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C22					
Course Summary & Justification	This course essentially encompasses two components. The first component is the advanced course materials on general analytical chemistry instruments, operation, sampling and their applications. Here some modern instruments which work under the principle of fluorescence are discussed to get an understanding of the present and future applications of these fluorescence microscopes in the field of medicine. In addition, a concise discussion on specific sampling methods and titrations in non-aqueous media is also included as an application of analytical chemistry. In the second part, nuclear reactions are discussed with an emphasis on nuclear activation techniques, light-initiated and heat-initiated reactions and their different outcome. Most common and complex nuclear interactions with matter are discussed to get an understanding of the synthetic utility of this technique while designing such processes. A special emphasis is given to the importance of nuclear medicine owing to its importance in cancer research, towards the end of the discussion. Therefore, the second part gives advanced know-how on nuclear chemistry with an added stress on					
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
	Others include Research, fieldwork, Independent Learning, etc.	40	40	0	40	120
Credit Value & Course Status	3	Core Course				
Pre-requisite	Basic Inorganic Chemi	stry				

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the methods used in sampling for various analytical methods.	U	1
2	Learn about the general instrumentation in thermal analysis, chromatography and microscopy	U	1, 2
3	Identify the utility and specificity of each analytical instrument and will be in a position to generate and explain the output data from the analytical instruments.	An	1, 2, 3,7
4	Critically understand the nuclear reactions, methods of detection and quantification, the scope and limitations of nuclear reactions	U	1, 2, 3
5	Evaluate the utility of fluorescence spectroscopy and nuclear radiation therapy for qualitative and quantitative methods of analysis, particularly in medicine.	E	1, 2, 3, 7
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), rest (I) and Appreciation (Ap)	Create (C),	Skill (S),

COURSE CONTENT	Hours	CO No
Unit 1: Sample Analysis	5	1, 3, 4, 5
Content for Classroom Transaction (Sub-units)		
1.1. Preparation of sample for analysis		
1.2. Errors and treatment of data		
Unit 2: Solubility	8	1, 3, 4, 5
Content for Classroom Transaction (Sub-units)		
2.1. Solubility and solubility product		
2.2. Common ion effect		
2.3. Precipitation phenomena		
2.4. Homogeneous precipitation		
2.5. Organic reagents in inorganic analysis		
Unit 3: Titrations in Non-aquesous Media	10	1-5
Content for Classroom Transaction (Sub-units)		
3.1. Titrations in non-aqueous media		
3.2. Potentiometry		
3.3. Polarography		
3.4. Amperometry		
3.5. Bi-amperometry		
3.6. Spectrophotometry		
3.7. Flame photometry		
3.8. Atomic absorption spectroscopy		
Unit 4: Ion Exchange	4	1, 2
Content for Classroom Transaction (Sub-units)		
4.1. Principles of ion-exchange		
4.2. Solvent extraction		
4.3. Chromatographic techniques		

Unit 5: Thermal Methods of Analysis	8	1, 2, 4, 5
Content for Classroom Transaction (Sub-units)		, , ,
5.1. Thermal method of analysis		
5.2. Principles and applications of thermogravimetry (TG)		
5.3. Differential thermal analysis (DTA)		
5.4. Differential scanning calorimetry (DSC)		
5.5. Dynamic mechanical analysis (DMA)		
Unit 6: Applications of X-Ray Diffraction	8	1, 2, 4, 5
Content for Classroom Transaction (Sub-units)		
6.1. Applications of X-ray diffraction		
6.2. Small angle X-ray scattering (SAXS),		
6.3. Scanning electron microscopy (SEM),		
6.4. Transmission electron Microscopy (TEM)		
6.5. Scanning probe microscopy (SPM)		
Unit 7: Nuclear Chemistry	10	1-5
Content for Classroom Transaction (Sub-units)		
7.1. Nuclear reactions fission and fusion		
7.2. Spontaneous and induced fission		
7.3. Q-value		
7.4. Cross sections		
7.5. Working of nuclear reactors		
7.6. Fission energy		
7.7. Transuranics		
7.8. Applications of radioactivity		
7.9. Carbon dating		
Unit 8: Radioactive Techniques	7	1, 2, 5
Content for Classroom Transaction (Sub-units)		
8.1. Neutron activation analysis		
8.2. Tracer techniques		
8.3. GM counter		
8.4. Interaction of high energy radiation with matter		
8.5. Radiation chemistry of water		
8.6. Aqueous solutions and organic compounds		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar/ Presentation by individual student, Assignments, Authentic learning, Quizzes				
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test – MCQ based and descriptive answer type Seminar Presentation – the students will be given individual topics for seminar presentation Assignments Quizzes A semester End examination 				

- 1. I. Vogel, J. Mendhan, Vogel's Texbook of Quantitative Inorganic Analysis, 6thEdn. Prentice Hall, 2000.
- 2. A. Skoog, D. M. West, F.J. Holler, Fundamentals of Analytical Chemistry, 7th Edn. Sauders College, 1996.
- 3. W. W. Wendlandt, Thermal Analysis, 3rd Edn. Wiley, 1986.
- 4. G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, World Scientific, 2010.
- 5. H. R. Arnikor, Essentials of Nuclear Chemistry, Wiley- Eastern, 1983.

CSM21C23 Chemical Kinetics

School Name	School of Chemical S	ciences				
Programme	M.Sc.					
Course Name	Chemical Kinetics					
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C23					
Course Summary & Justification	In chemical kinetics, the students will learn the rate laws of chemical transformations, and experimental methods of determining the rate of a reaction. Also, they will be able to understand different types of Complex reactions and Application of the method of integration, Differential method, Half-life method and Graphical method to solve for the concentration of chemical species during a reaction of different orders. After completion of this course, the students will be able to understand the collision frequency, kinetic energy and orientation of colliding reactant molecules affect the rate of a chemical reaction and also, explain how enzymes act as biological catalysts and how they interact with specific substrate molecules.					
Semester	III					
Total Student Learning Time (SLT)	Learning Approach Le	ecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	 The concept of reaction rates General form of the rate law for any chemical reaction The relationship between the order of a reactant and the stoichiometric coefficient for the reactant in the overall balanced chemical equation. How the order of each reactant appearing in the rate law is determined Distinguish between instantaneous rates and average rates 					

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	After Completion of this course, the student should be able to;	U	1, 2, 3
	Understand the concept of rate of change associated with		
	chemical change, recognizing that the rate of change and how it		
	can be measured		
2	Identify the reaction order for a chemical change	S	3 ,4, 5
3	Recognize the integrated rate laws and evaluate the order of the	Ар	5, 6, 7
	reaction from plots of concentration versus time,		
	In(concentration) versus time, and 1/(concentration) versus time		
4	Apply integrated rate equations to solve for the concentration of	А	1, 2, 3,
	chemical species during a reaction of different orders		5
5	Analyses and explain how enzymes act as biological catalysts and	U	5, 6, 7
	how they interact with specific substrate molecules.		
6	Interpret potential energy profiles and use them to determine the	С	1, 2, 3,
	activation energy and potential energy changes for a reaction.		6
7	Understand the differences between the kinetics of reactions in	U	3, 4, 5,
	the gas phase, compared with those in liquid solutions		6
8	Evaluate and explain the distinction between diffusion-control and	E	5, 6, 7
	activation control of reaction rates in solutions		
*Rem	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E),	, Create (C),	Skill (S),
Inter	est (I) and Appreciation (Ap)		

COURSE CONTENT	Hours	CO No
Unit 1: Introduction to Chemical Reaction Kinetics	14	1, 2, 3,
Content for Classroom Transaction (Sub-units)		8
1.1. Reaction rates and order of reactions, determination of the order of reactions		
1.2. Complex reactions (Free radical chain reactions, branching reactions, hydrogen-oxygen and Hydrogen –Halogen reactions.)		
1.3. Reversible, consecutive and opposing reactions		
1.4. The Analysis of kinetics results: the method of integration, Graphical methods, half-life methods, Guggenhiem's method, and the differential method.		
1.5. Reactions of variable order- steady-state treatment, free radical reactions-the Rice Herzfeld Mechanism.		
1.6. Studies of fast reactions by flow method, Relaxation method and flash photolysis		
1.7. Theories of unimolecular reaction and their treatments (Lindemann-Hinshelwood and Rice-Ramsperger-Kassel-Marcus (RRKM) theory.		

Unit 2: Reaction Dynamics	16	3, 4, 6
Content for Classroom Transaction (Sub-units)		
2.1. Collision theories of reaction rates, steric factor		
2.2. Arrhenius equation, activated complex theory, Collision cross		
section and reaction cross-section		
2.3. Collision theory. Potential energy surfaces and reaction coordinate		
2.4. Transition state theory		
2.5. Comparative study of the theories of reaction rates		
2.6. Thermodynamic treatment of Reaction rates.		
2.7. Kinetic theory of gases, Transport properties in gases		
Unit 3: Kinetics of reactions in solution	16	4, 5, 7
3.1. Diffusion controlled reactions		
3.2. Effect of solvent on rates of reactions		
3.3. Ionic reactions and effect of ionic strength		
3.4. Kinetic Salt effect		
3.5. Dynamics of barrier-less chemical reactions in solutions		
3.6. Effect of pressure on the velocity of gas reactions		
3.7. Homogeneous catalysis and Heterogeneous catalysis		
3.8. Enzyme kinetics-Enzyme catalysis and its mechanism, Michelis –		
Menten equation, the effect of pH and temperature on enzyme		
catalysis		
3.9. Surface phenomena and physical methods for studying surfaces		
Unit 4: Kinetics of Polymerisation	14	1, 8
4.1. cationic and anionic reactions		
4.2. explanation of copolymerization in terms of kinetics		
4.3. copolymerization equation		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning, interactive sessions Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Seminar and Group discussion.					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	 Internal Test – on extended answer type 					
	 Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar B. Semester End examination 					

- 1. K. J. Laidler, Chemical Kinetics, 4th Edn. Harper & Row,
- 2. P. J. Flory, Principles of polymer Science, Cornel University

CSM21C26 Advanced Organic Synthesis

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Advanced Organic	Synthesis				
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C26					
Course Summary & Justification	In this course, in addition to learning some new reactions and concepts in organic synthesis, the reactions learned in the previous semesters are applied, especially to complex organic molecules. This course enables the student to independently analyse a synthetic problem and arrive at a viable solution. Also equips the student to bring forth a plausible synthetic route to complex organic molecules of importance. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences. This course is designed to provide students with a comprehensive understanding of organic reactions and their applications. This knowledge will enable the students to come up with synthetic strategies for organic transformations as well as equip them to design synthetic routes for complex organic molecules of natural and unnatural origin.					
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	SCSMPC07 Stereochemistry and Conformations of Organic Compounds SCSMPC17 Reactions and Reagents in Organic Synthesis					

CO	Expected Course Outcome		PSO
No.		Domains	No.
1	Acquires the ability to do chemical transformations.	U	1
2	Acquires the skill to propose the mechanism of reactions.	U	3
3	Equip the students to synthesize complex natural and unnatural compounds of importance by practicing retrosynthetic analysis.	A	4

4	Acquires the knowledge to transform molecules using functional	А	5, 7		
	group interconversions.				
5	Work in the interdisciplinary and multidisciplinary areas of chemical sciences and its applications.	A	6		
6	Be able to work productively and collaboratively as a team member	S	5		
	by solving problems with other students.				
7	Provide students with the skills required to succeed in Master	А	6, 7		
	program and enrich them with basic skills to perform in the R & D				
	chemical industrial level.				
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: Organometallics Application of organo-transition metal complexes in Organic synthesis with special reference to organopalladium chemistry-Heck reaction, Stille coupling, Kumada coupling, Suzuki coupling, Negishi coupling, Hiyama coupling, Sonogashira coupling and Cadiot-Chodkiewicz reaction.	8	1, 2
Unit 2: Protection and Deprotection Protection, activation and deprotection process in organic synthesis, Protection and deprotection of hydroxyl, carboxyl, carbonyl and amino groups.	12	1, 3, 4
Unit 3: Reactions and reagents in organic synthesis Macrolactonization, Mitsunobu reaction, Metallocarbenes, Metathesis reactions, Different types of metathesis reactions, Grubb and Schrock catalysts.	10	3, 4
Unit 4: Multicomponent reactions (MCR) and Combinatorial chemistry Survey of multicomponent reactions-Passerini-Ugi-Biginelli-Introduction to Combinatorial chemistry	6	2
Unit 5: Name reactions in organic synthesis Bamberger, Baylis-Hillman, Bergmann, Buchwald-Hartwig, Click, Dakin, Demjanov, Di-pi-methane, 1,3-dipolar, Mannich, Michael, Nazarov, Neber, Nef, Noyori, N-H-K, Pauson-Khand, Pechmann, Ritter, Sakurai, Shapiro, Stobbe, Tebbe and Vilsmeier reactions.	12	2, 4, 5, 6
Unit 6: Rearrangement reactions Beckmann, Benzilic acid, Claisen, Curtius, Dienone-Phenol, Favorskii, Fischer-Hepp, Fries, Hoffmann, Lossen, Orton, Schmidt, Smiles, Sommelet- Hauser, Stevens, Von Richter, Wagner-Meerwein, Wittig and Wolff rearrangements.	12	4, 5 ,6, 7

Teaching and	Classroom Procedure (Mode of transaction)						
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning						
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group						
	Assignments Authentic learning, Library work and Group discussion,						
	Presentation by individual student/ Group representative.						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	 Internal Test – One MCQ based and on extended answer type 						
	 Book review – every student to review a seminal work on 						
	Alternative Education and submit a report						
	• Seminar Presentation – a theme is to be discussed and identified						
	to prepare a paper and present in the seminar						
	 Field visit report – each student shall individually or in group visit 						
	an institution with demonstrated experience of alternative						
	thoughts and prepare a report						
	B. Semester End examination						

- 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Part B, 5th Edn. Springer, 2007
- 2. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, 2nd Edn. John Wiley, 1994
- 3. T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley, 1999
- 4. J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley VCH, Weinheim 2005
- 5. L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press 2005

SUGGESTED READINGS

- 1. J. Fuhrhop, G. Penzlin, Organic Synthesis, VCH Weinheim, 1994
- 2. K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley VCH Weinheim 1996
- 3. S. V. Bhat, B. A. Nagasampagi, M. Sivakumary, Chemistry of Natural Products, Narosa publishing New Delhi, 2005

CSM21C27 Organic Chemistry Lab- II

School Name	School of Chemical	Sciences					
Programme	M.Sc.						
Course Name	Organic Chemistry	Organic Chemistry Lab- II					
Course Credit	2						
Type of Course	CORE						
Course Code	CSM21C27						
Course Summary & Justification	Students will learn how to apply common laboratory techniques to determine the structure and the chemical properties of organic compounds They will become familiar with the nomenclature and behavior of organic functional groups through reactions and instrumental analysis. Various reactions including nucleophilic substitution, dehydration, and oxidation will be used to synthesize new compounds from starting materials.						
Semester	111						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Independent learning	0	0	120	30	150	
Pre-requisite	Basic knowledge in practical organic chemistry						

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Able to perform experiments individually and gain knowledge about	U	1
	principles and techniques involved in various experiments		
2	Acquire Experimental skills & handling instruments.	А	3
3	Gain Knowledge in Prediction & verification of Experimental results	Ар	2
4	To predict the mechanisms of different molecular rearrangements	An	2, 3,
			6
5	Describe reaction mechanisms in terms of energetics, reaction kinetics,	U	6, 7
	and thermodynamics.		
6	Correlate the reactivity of a compound with its structure.	С	6
7	Evaluate the yield of a particular product in a mixture under a set of	E	4, 5
	conditions		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Content for Laboratory Transaction (Sub-units)	50	1-7
Unit 1: Advanced multi-step synthesis of organic compounds		
1.1. Principles of organic synthesis		
1.2. Various experimental methods		
Unit 2: Characterisation of Compounds	10	2-7
2.1. Infra-Red Spectroscopy		
2.2. NMR Spectroscopy		
2.3. UV-Visible Spectroscopy		
Unit 3: Isolation of Natural Products, Purification and characterisation	60	1-7
3.1. Thin Layer Chromatography		
3.2. Column Chromatography		
3.3. Steam distillation		
3.4. Solvent Extraction		
3.5. Soxhlet Extraction		

Assessment	Mode of Assessment					
Types	Lab/Experiment skills					
	Lab record/Report					
	Viva-voce					
	Lab Discipline (participation, punctuality, accuracy)					

REFERENCES

- 1. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith, A. R. Tatchell, Vogel's Text Book of Practical Organic Chemistry, ELBS & Longman, London, 2005.
- 2. R. M. Silverstein, G. C. Bassler, T. C. Merril, Spectrometric Identification of Organic Compounds, John Wiley & Sons, 1981.
- 3. D. Pasto, C. R. Johnson, M. J. Miller, Experiments and Techniques in Organic Chemistry, Prentice Hall, 1992.

CSM21C35 Research Project and Seminar

School Name	School of Chemical S	Sciences				
Programme	M.Sc.					
Course Name	Research Project an	d Seminar				
Course Credit	9					
Type of Course	CORE					
Course Code	CSM21C35					
Course Summary	The candidate shall give a seminar (30 minutes) on the research project					
& Justification	submitted. This follow	s a discussi	on with the	e Examinati	on Board	consisting
	of the Chairman, the li	of the Chairman, the Internal Examiner and the External Examiner.				
Semester	IV					
Total Student	Learning Approach	Lecture	Tutorial	Practical	Others	Total
Learning Time						Learning
(SLT)						Hours
	Library work, lab	-	-	-	-	-
	work, Teamwork,					
	independent					
	learning					
Pre-requisite						•

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	At the end of the course, the students are expected to		
1	To present and discuss the research objectives, methodology, analysis, results and conclusions effectively.	A	2-5
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1, 7
3	Gain deeper knowledge of methods in the topic of study.	А	6
4	Able to contribute to research and development work.	U	3
5	Undertake independent, original and critical research on a relevant topic.	U	5
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6
7	Create, analyse and critically evaluate different problems and their solutions.	С	7
8	Gain a consciousness of the ethical aspects of research.	E	6
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Cr rest (I) and Appreciation (Ap)	eate (C), Sl	aill (S),

Teaching and	Classroom Procedure (Mode of transaction)
Learning	E-learning, interactive Instruction: Seminar, Authentic learning, Library work,
Approach	laboratory work, Teamwork, independent learning and Group discussion,
	Presentation of research work.
Assessment	Mode of Assessment
Types	Evaluation of the presentation by both internal and external examiners.

CSM21C36 Comprehensive Viva-Voce

School Name	School of Chemica	l Sciences				
Programme	M.Sc.					
Course Name	Comprehensive Vi	va-Voce				
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C36					
Course Summary & Justification	The comprehensive viva-voce shall be conducted by the Examination Board consisting of the Chairman, the Internal Examiner and the External Examiner. A thorough understanding of all the M.Sc. level course contents and recent trends in the broad area of chemical sciences are evaluated.					
Semester	IV					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Classroom studies, lab work, library Library work, independent learning, etc.	-	-	-	-	-
Pre-requisite	Basic as well as in-de	epth knowle	edge in the	courses he	she studi	ed

CO No.	Expected Course Outcome	Learning Domains	PSO No.	
	At the end of the course, the students are expected to			
1	Achieve fundamental and in-depth knowledge	А	3	
2	Acquire more in-depth knowledge of the major subject of study	Ар	1-7	
3	Deeper knowledge of methods in the major subject of study.	А	1, 4	
4	Able to contribute to research and development work.	U	3	
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) E-learning, interactive Instruction: Seminar, Authentic learning, Library work, laboratory work, Team work, independent learning and Group discussion, Presentation of research work
Assessment	Mode of Assessment
Types	Thorough understanding of all the M.Sc. level course contents and recent trends in the broad area of chemical sciences are evaluated. The candidate will be asked questions based on the whole syllabus he/she studied in the entire programme. How he/she answered or responded the questions asked will be considered for evaluation.

CSM21C38 Advances in Organic Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Advances in Organ	ic Chemist	ry			
Course Credit	3					
Type of Course	CORE					
Course Code	CSM21C38					
Course Summary & Justification	chemistry, industrial chemistry. In addition chemistry journals to synthesis. This course review writing, write subject will enable th sciences. This course is design some areas of appl	In this course, the student learns some new topics such as medicinal chemistry, industrial organic chemistry, process chemistry and reticular chemistry. In addition, the student gets exposure to some top organic chemistry journals to learn methodology development and natural product synthesis. This course also trains the student to identify a research topic for review writing, write a review and submit to a journal. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences. This course is designed to provide students with a good understanding of some areas of applied organic chemistry. This knowledge will be very beneficial in medicinal chemistry, especially drug discovery.				
Semester	IV					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre-requisite	SCSMPC17 Reactions SCSMPC26 Advanced	•	•	nic Chemist	ry	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Acquires the ability to understand medicinal chemistry aspects.	U	1
2	Acquires the ability to understand aspects of heterocyclic chemistry.	U	3
3	Equip the students to design synthetic routes for complex organic molecules.	A	2, 3, 6, 7
4	Acquires the knowledge to propose an industrial route for organic molecules.	A	2

5	Work in the interdisciplinary and multidisciplinary areas of chemical	А	3, 4,
	sciences and its applications.		5
6	Be able to work productively and collaboratively as a team member by	S	5
	solving problems with other students.		
7	Provide students with the skills required to succeed in master program	А	2, 3
	and enrich them with a basic-skills to perform at R & D chemical		
	industrial level.		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Medicinal Chemistry Basic principles - IC50, LogP, LogD, MIC, Efficacy, Stages in drug discovery, Natural and Synthetic drugs, Basic knowledge on anti-bacterials, beta-lactam antibiotics, Opium analgesics, Anti-inflammatory drugs, NSAID, proton pump inhibitors, cardiovascular drugs, Sulfonamides, Chiral drugs.	14	1
Unit 2: Heterocycles Aromatic and nonaromatic heterocycles, Synthesis of heterocycles, basicity- Pyridines, quinolines, isoquinolines, pyrroles, furans, thiophenes, Indoles, pyrimidines, imidazoles, pyrazoles, aziridines. Fused heterocycles, Name reactions in heterocyclic chemistry-Bartoli, Corey-Chykovsky, Darzen, Jacobsen, Katzuki, Paterno-Buchi, Paal-Knorr pyrrole & furan, Fischer indole, Bischler-Napieralski, Pictet-Spengler Syntheses	16	2, 6, 7
Unit 3: Retrosynthetic analyses Comparison and selection of appropriate reactions-designing synthesis. Retrosynthetic analysis-Disconnection approach. One group, two groups and illogical disconnections. Functional group interconversion-Synthetic equivalent groups-Multistep synthesis -Convergent synthesis -Formation of C-C bonds, carbon-heteroatom bonds, Ring closure and ring-opening reactions	18	3, 5, 6, 7
Unit 4: Industrial Organic Chemistry Basic principles, Basic building block chemicals from fossil sources, Non- petroleum sources of organic chemicals (coals, fats & oils, Carbohydrates), Food additives, Catalysis in industrial organic chemistry.	14	4, 6, 7

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative.
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (CIA) Internal Test – One MCQ based and on extended answer type Book review – every student to review a seminal work on Alternative Education and submit a report

	 Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar
	• Field visit report – each student shall individually or in a group visit an institution with demonstrated experience of alternative
B	thoughts and prepare a report emester End examination

REFERENCES

- 1. G. L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, 1995
- 2. G. Thomas, Fundamentals of Medicinal Chemistry Wiley, 2003
- 3. T. L. Gilchrist, Heterocyclic Chemistry, 3rd Edn. Dorling Kindersley publication, 2007
- 4. S. Warren, Organic Synthesis-A Disconnection Approach, John Wiley, 1985
- 5. H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, Wiley-interscience, New Jersey, 2004.
- 6. H-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, Germany, 2010.

SUGGESTED READINGS

- 1. X-T. Liang, W-S. Fang, Medicinal Chemistry of Bioactive Natural Products, Wiley interscience, 2006
- 2. A. Kar, Medicinal Chemistry, 3rd Edn. New age international publishers New Delhi, 2005
- 3. J. A. Joule, G. F. Smith, Heterocyclic Chemistry, 2nd Edn. Chapman and Hall, 1990
- 4. J. J. Li, Name Reactions in Heterocyclic Chemistry, Wiley interscience, 2005
- 5. J. Fuhrhop, G. Penzlin, Organic Synthesis: VCH, Weinheim, 1994

CSM21E41 Equilibrium Statistical Mechanics

School Name	School of Chemical Sciences
Programme	M.Sc.
Course Name	Equilibrium Statistical Mechanics
Course Credit	2
Type of Course	ELECTIVE
Course Code	CSM21E41
Course Summary & Justification	Equilibrium Statistical mechanics provides a theoretical bridge that takes you from the micro world to the macro world. This attempts to derive the macroscopic properties of an object from the properties of its microscopic constituents and the interactions amongst them. It tries to provide a theoretical basis for empirical thermodynamics. This course is designed at providing students with basic concepts of calculating properties of an energetically isolated system in equilibrium by imposing probability distribution over the set of microscopic states compatible with the external constraints imposed on the system. Using this probability distribution, average values of specified functions of the microscopic conditions of the gas can be calculated. From this course, students will be able to understand what probability distribution means, why average values for macroscopic conditions, and how phase averages related to measured features of the macroscopic system, etc. And also helps the students to analyse how changing quantum mechanical basis leads to wholesale changes within statistical mechanics. Bose-Einstein statistics, Fermi Dirac statistics and Maxwell Boltzmann statistics will be discussed. Students will be able to calculate thermodynamic properties (U, H, S, A, G) and equilibrium constant (K). This course helps students to arexplain T ³ dependence of heat capacity of solids. Students will <i>understand</i> the concept of phonons. Also, students will be able to explain Fermi energy and the Free electron model of metals and use it to solve problems. Further, students will gain deep knowledge of photon gas.

Semester	I					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100

Pre-requisite	Basics of Thermodynamics, Quantum dynamics and Probability theory. This is
	based on statistical methods, probability theory and microscopic physical laws.
	It can be used to explain the thermodynamic behaviour of large systems.

СО	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
1	Basic knowledge of Thermodynamics	U	1		
2	Understand the inadequacy of Quantum dynamics and Probability theory	U	1, 2		
3	Identify the statistical methods and microscopic physical laws.	R	1, 6		
4	Analysis of probability theory and problem-solving	E	1, 3, 6,		
5	Applying the principles of statistical thermodynamics can calculate	А	1, 2		
	the thermodynamic properties and equilibrium constant (K) of large				
	systems.				
6	Explain T ³ dependence of heat capacities of solids	U	1, 2		
7	Explain the Fermi energy and Free electron model of metals and use	А	1, 4,		
	it to solve problems				
8	Explain photon gas and phonon gas	U	1, 4, 7		
*Ren	*Remember (R), Understand (U), Apply (A), Analyze (An), Evaluate (E), Create (C), Skill (S),				
Inter	Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: Mathematical preliminaries	5	2, 4
Content for Classroom Transaction (Sub-units)		
1.1. Elementary combinatorics		
1.2. Stirling's approximation		
1.3. Method of Lagrange multipliers		
1.4. Introduction to probability		
1.5. Gamma functions		
1.6. Power series method		
Unit 2: Physics preliminaries	3	1, 2
Content for Classroom Transaction (Sub-units)		
2.1. Classical mechanics		
2.1.1 Newtonian, Lagrangian and Hamiltonian approaches to		
mechanics.		
2.2. Quantum Mechanics		
2.2.1 Hydrogen atom, rigid rotor and harmonic oscillator		
Unit 3: Classical and quantum statistics	3	3
Content for Classroom Transaction (Sub-units)	-	-
3.1. Bose-Einstein statistics		
3.2. Fermi Dirac statistics		
3.3. Maxwell Boltzmann statistics		

	la thaom.	^	2 5
Unit 4: Ensemb	-	4	3, 5
	ssroom Transaction (Sub-units)		
4.1. Gibb's			
-	ot of phase space		
	te of equal apriori probabilities		
	ole averages		
4.5. Partitio	n function		
	al anombio	2	2 5
Unit 5: Canonic		3	3, 5
	ssroom Transaction (Sub-units)		
	ion of undetermined Lagrange multipliers		
5.2. Boltzma	ann's hypothesis		
Unit 6: Other e	nsembles	2	3, 5
	ssroom Transaction (Sub-units)	Z	5, 5
	canonical ensemble		
6.2. Grand (canonical ensemble		
Unit 7: Ideal gas	s	3	3, 5
-	ssroom Transaction (Sub-units)	5	3, 3
	tion of PV= nRT from first principles		
	sions for heat capacity at constant volume and constant pressure		
7.2. Express	sions for heat capacity at constant volume and constant pressure		
Unit 8: Molecul	ar interactions in liquids	4	3, 5
	ssroom Transaction (Sub-units)		
	distribution function g(r)		
	tion of g(r) using Monte Carlo method		
	tion of g(r) using molecular dynamics approach		
Unit 9: Chemica	al equilibrium	3	3, 5
Content for Clas	ssroom Transaction (Sub-units)		
9.1. Connec	tion between the equilibrium constant of gas phase reactions		
	e canonical partition function		
Unit 10: Solids		5	6
	ssroom Transaction (Sub-units)		
10.1.	Einstein and Debye theory of solids.		
10.2.	Phonons		
	and Dhotons		7 0
Unit 11: Metals		5	7, 8
	ssroom Transaction (Sub-units)		
11.1.	Fermi function and Fermi energy.		
11.2.	Free electron model and density of states.		
11.3.	An ideal gas of photons (black body radiation		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Contact classes, Tutorials, Seminars, Assignments Seminars, Authentic learning,					
Approach	Library work, independent studies Presentation by individual students. Computational lab					

Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	Surprise test
	 Internal Test – Objective and descriptive answer type
	Submitting assignments
	• Seminar Presentation – select a topic of choice in the
	concerned area and present in the seminar
	B. Semester End examination

References

- 1. A. McQuarrie, Statistical Mechanics, University Science Books, 2000.
- 2. K. Huang, Statistical Mechanics, 2nd Edn. John Wiley and Sons, New York. 1987.
- 3. B. Widom, Statistical Mechanics A Concise Introduction for Chemists, Cambridge, University Press, 2002.
- 4. P. Atkins, J. De Paula, Atkins' Physical Chemistry, 9th Edn. Oxford University Press, Oxford, 2010.
- 5. W. Feller, Introduction to Probability and its applications, 2nd Edn. John Wiley 2008.
- 6. D. Stirzaker, Elementary Probability, Cambridge University Press, Cambridge, 1994.

CSM21E42 Introduction to Polymer Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Introduction to Polymer Chemistry					
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E42					
Course Summary& Justification	Polymer chemistry is a distinctive topic in chemistry having many inter as well as multidisciplinary components. This course is designed as an interdisciplinary course that includes fundamental as well as in-depth knowledge of polymer science. The syllabus has been designed to cover the fundamental understanding of different fields of polymer chemistry with special emphasis on polymer synthesis and related topics thereby enabling the students to work in frontier areas of polymer sciences. This comprises the history of polymer science and its relevance in the development of human civilization. The syllabus covers the significance of polymer molecular weight and its relation to the structure and property of various polymers. This course also covers a detailed study of polymerisation types and techniques for polymer synthesis. Finally, an idea about the thermodynamics and kinetics of polymerization followed by copolymerization kinetics is discussed. This course, students will be able to understanding of the contemporary trends and growth in the field of polymer science. After the completion of this course, students will be able to understand the basics associated with polymer materials and the method/mechanism of its synthesis.					
Semester	1					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Others include Group discussions, Seminars, Independent Learning, etc.	40	0	0	60	100
Pre-requisite	Nil					

CO No.	Expected Course Outcome	Learning domain	PSO No		
1	To Acquire sound knowledge of the fundamentals and importance of Polymer chemistry	R, U	1, 3, 6		
2	To understand the peculiarities of polymer molecular weight and various determination techniques	U, A	1, 4, 5		
3	To Correlate the structure, property relationship in polymeric materials for various applications	An	1, 2, 3, 6		
4	To outline the basic concepts of Tg, crystallinity and polymer morphology	U, A	1, 2, 4		
5	To compare and correlate various polymerization methods and techniques including advanced approaches	U, A, An	1, 2, 4, 7		
6	To outline the mechanism and kinetics of polymerizations including co-polymer equation	An, E	1, 2, 6, 7		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: Fundamentals of polymer & macromolecule	5	1, 4
Content for classroom transaction		
1.1. Concept of polymer & macromolecules		
1.2. Definition, classification, functionality		
1.3. Methods of polymerization,		
1.4. Polydispersity conformation and configuration of macro-molecules		
stereo isomerism and tactility in polymers		
Unit 2: Polymer structure and properties	5	1, 3, 4
Content for classroom transaction (Sub-units)		
2.1. Crystalline and amorphous polymers		
2.2. Crystallinity		
2.3. Basic determinants of polymer properties		
2.4. Polymer chain flexibility. Factors affecting chain flexibility		
Unit 3: Polymer Molecular weights	7	1, 2, 3
Content for classroom transaction (Sub-units)		
3.1. Molecular weights and molecular weight averages		
3.2. Molecular weight distribution, molecular weight distribution curve,		
integral and differential distribution curve		
3.3. Methods of molecular weight determination-end group analysis,		
colligative property measurements, light scattering, ultra-		
centrifugation, viscometry, etc.		
3.4. Fractionation of polymers, GPC		
Unit 4: Thermal transitions in polymers		
Content for classroom transaction (Sub-units)	3	4
4.1. Glass transition temperature and crystalline melting points-Definition		
4.2. Factors affecting Glass transition temperature		
4.3. Methods to determine Tg, DSC, DTA, etc		

Unit 5: Synthesis and techniques of Polymerization	7	5
Content for classroom transaction (Sub-units)		
5.1. Condensation and addition polymerization, Chemistry of monomeric units.		
5.2. Polymerization techniques: solution, bulk, emulsion polymerizations, melt and interfacial polycondensations methods		
5.3. ring opening polymerization, Group transfer polymerization, Photochemical polymerization		
5.4. Advanced polymerization methods such as RAFT, ATRP, etc		
Unit 6: Mechanism and kinetics of polymerisation reactions		
Content for classroom transaction (Sub-units)	9	6
6.1. Mechanism and kinetics of polyaddition reactions, initiated by radical		
cationic and anionic means, living polymers.		
6.2. Coordination polymerization, Ziegler Natta polymerization		
6.3. Step reaction polymerization and its mechanism, kinetics of linear stoichiometric polycondensation		
6.4. Carothers equation, number distribution and weight distribution functions, polyfunctional step reaction polymerization (non-linear poly condensation), branching in condensation polymerisation, gelation, prediction of gel point		
6.5. Steady-state kinetics, degree of polymerization and chain transfer,		
chain termination, thermodynamics of polymerization		
Unit 7: Co-polymerization		
Content for classroom transaction (Sub-units)		
7.1. Simultaneous polymerization of more than one monomer, random, graft and block copolymers	3	6
7.2. Copolymerization equation		

Teaching and Learning Approach	Classroom Procedure (mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Peer teaching and learning, Technology-enabled learning, Library work		
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (40%) • Internal Tests • Assignments • Seminar Presentation • Review Report B. End Semester Examination (60%)		

References

1. V.R. Gowariker, N.V. Viswanathan, J. Sreedhar, Polymer Science, New Age International, 2010

Suggested Reading

- 1. G. G. Odian, Principles of Polymerization, 4th Edn. John Wiley & Sons, 2004.
- 2. K. J. Saunders, Organic Polymer Chemistry, 2nd Edn. Chapmann& Hall 1988.
- 3. K. Matyjaszewski, T. P. Davis, Handbook of Radical Polymerization, Wiley-Interscience, 2002.

- 4. P. J. Flory, Principles of Polymer Chemistry, Cornel University Press. London, 1953.
- 5. F. W. Billmeyer, Text Book of Polymer Science, Wiley interscience, 1976.
- 6. H. R. Allock, F. W. Lampe. Contemporary Polymer Chemistry. Prentice hall, 1981.
- 7. J. M. G. Cowie, V. Arrighi, Polymers: Chemistry & Physics of Modern Materials, 3rd Edn. CRC Press, 2008.

CSM21E43 Supramolecular Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Supramolecular Chemistry					
Course Credit	2					
Type of Course	ELECTIVE	ELECTIVE				
Course Code	CSM2 E43					
Course Summary and Justification	This course essential supramolecular chem completion of this co branch of chemistry. H attraction in general complex molecular ass Every biological reacti such supramolecular general occur in an understand the recogn host-guest interaction	nistry at t urse, the s lere the mo called "nor semblies ha on takes pl assemblies. out-of-ec nition proce	the chemis student will olecules are n-covalent i vegreat sig ace by the . That is wh quilibrium	stry-biology get an ide organized interactions nificance in formation a ny the biolo situation.	interface a about t by weak t s". These the biologe and destru- ogical read The stud	e. After this new forces of kinds of gy of life. action of ctions in ent will
Semester Total Student	Learning Approach	Lecture	Tutorial	Practical	Others	Total
Learning Time (SLT)		Lecture	Tutonar	Tactical	others	Hours
	Others include Research, fieldwork, Independent Learning etc.	40	0	0	60	100
Credit Value & Course Status	2		Ele	ctive Course	9	
Pre-requisite	-	ntum mechanics, analytical solutions of Schrodinger eqaution the energy of atoms and molecules				

COU	COURSE OUTCOMES (CO)				
СО	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
1	After Completion of this course, the student should be able to;	R	1		
	Understand the general concepts and definition of supramolecular				
	chemistry and its importance at the chemistry-biology interface				
2	Apply the basic principles of supramolecular chemistry to understand	А	2, 3		
	biological reactions respiration, neuron signalling, protein synthesis,				
	DNA replication, photosynthesis etc.				
3	Distinguish and synthesize cation binding host molecules	An	7		
4	Distinguish and synthesize anion binding host molecules	An	7		
5	Distinguish and synthesize neutral molecule binding host molecules	С	7		
6	Understand the design and synthesis of molecular robots/machines	S	4.6		
	for various applications for instance in developing artificial				
	intelligence				
*Ren	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
	est (I) and Appreciation (Ap)	· · ·			

COURSE CONTENT	Hours	CO No
Unit 1: Definition and development of supramolecular chemistry	10	1
Content for classroom transaction (Sub-units)		
1.1. Classifications of supramolecular host-guest compounds		
1.2. Receptors, coordination and the lock and key analogy		
1.3. The chelate and macrocyclic effects		
1.4. Preorganization and complementarity		
1.5. Thermodynamic and kinetic stability		
1.6. Nature of supramolecular interactions		
Unit 2: Supramolecular chemistry of life	7	2
Content for classroom transaction (Sub-units)		
2.1. Alkali-metal cations in biochemistry		
2.2. Porphyrins and tetrapyrrole macrocycles		
2.3. Supramolecular features of plant photosynthesis		
2.4. Uptake and transport of oxygen by haemoglobin		
2.5. Coenzyme B12		
2.6. Neurotransmitters		
2.7. Hormones		
2.8. DNA		
Unit 3: Cation binding hosts	5	3
3.1. The crown ethers		
3.2. Lariat ethers and podands, cryptands		
3.3. The spherands		
3.4. Nomenclature, solution behaviour, selectivity of cation		
complexation		
3.5. The macrocyclic, macro bicyclic and template effects		
3.6. Soft ligands for soft metal ions		
3.7. Complexation of organic cations		
3.8. The calixarenes		
3.9. The siderophores		
Unit 4: Binding of anions	5	4
Content for classroom transaction (Sub-units)		
4.1. Biological anion receptors		
4.2. Concepts in anion host design		
4.3. From cation hosts to anion hosts-a simple change in pH		
4.4. Guanidinium-based receptors		
4.5. Organometallic receptors		
4.6. Neutral receptors		
4.7. Anticrowns		
Unit 5: Binding of neutral molecules	5	5
Content for classroom transaction (Sub-units)		
5.1. Inorganic solid-state clathrate compounds		
5.2. Solid-state clatharates of organic hosts		
5.3. Intractivity complexes of neutral molecules		
5.4. Solution and solid-state binding		
5.5. Supramolecular chemistry of the fullerenes		

Unit 6: Templates and self-assembly	8	6
Content for classroom transaction (Sub-units)		
6.1. Kinetics and thermodynamic considerations		
6.2. Self-assembling of coordination compounds		
6.3. Self-assembly of closed complexes by hydrogen bonding		
6.4. Catenanes and rotaxanes		
6.5. Self-assembly in biochemical and synthetic systems		
6.6. Helicates		
6.7. Molecular knots		
6.8. Catalytic and self-replicating systems		

Teaching and Learning Approach	Learning Approach Consists of Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning		
Assessment Types	Mode of Assessment A. Continuous Internal Assessment Internal Tests Assignments Seminar Performance during tutorial Internal examination/ Viva voce B. End Semester Examination		

References

1. J. W. Steed, J. L. Atwood, Supramolecular Chemistry, John Wiley and Sons, 2000

Suggested Reading

- 1. H. Dodziuk, Introduction to Supramolecular Chemistry, Springer, 2001.
- 2. F. Vogtle, E. Webner, Host Guest Complex Chemistry: Macrocycles: Synthesis, Structures, applications, 2nd Edn. Springer, 1985
- 3. P. D. Beer, P. A. Gale, D. K. Smith, Supramolecular Chemistry, Oxford University Press, 1999.
- 4. K. Ariga, T. Kunitake, Supramolecular Chemistry: Fundamentals and Applications, Springer, 2006
- 5. J. M. Lehn, Supramolecular Chemistry: Concepts and Perspectives. John Wiley publications, 1995
- 6. S. Ranganathan, Patterns for Supramolecular Design, New Age International (P) Ltd., Publishers, 2009
- 7. K Das, M. Das. An Introduction to Supramolecular Chemistry, CBS PUBLICATION, 2017

CSM21E44 Theory of Polymer Solutions

School Name	School of Chemical S	ciences				
Programme	M.Sc.					
Course Name	Theory of Polymer So	olutions				
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E44					
Course Summary & Justification	The course outlines the fundamentals of polymer solubility, solubility parameters, thermodynamics and theories of polymer solutions etc. The course also focuses on the configuration and conformation of macromolecules. This course aims to introduce the fundamental concepts that describe the concept of solubility and solubility parameters. The solubility parameter is very much important in selecting the material for processing. The thermodynamics of polymer solutions helps to identify the miscibility and compatibility of different types of polymers and their blends					
Semester	1		-		-	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100
Pre-requisite	Basic knowledge about	chemistry	at the bac	nelor's leve	I	

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	To understand the basics of solubility and solubility of different types of materials	U	1, 2
2		11 0.0	2.2
2	To understand the thermodynamics of polymer solutions	U, An	2, 3
3	To understand the significance of different theories of polymer	U, An	4-7
	solutions		
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Cr est (I) and Appreciation (Ap)	eate (C), Sl	kill (S),

COURSE CONTENT	Hours	CO No
Unit 1: Introduction	10	1
Content for classroom transaction (Sub-units)		
1.1. Solubility of low molecular weight substances and polymers, theories		
of polymer solubility-different stages of polymer solubility, fractional		
precipitation, non-solvents, solubility of amorphous and crystalline		
polymers, solubility parameter concept		
Unit 2: Thermodynamics of polymer solution	15	2
Content for classroom transaction (Sub-units)	15	2
2.1. Lattice theory and its advantages and limitations, Flory-Huggins and		
Flory-Kingbaum theories and their advantages and limitations,		
corresponding state theories, Flory temperature, polymer-solvent		
interaction parameter, the unperturbed polymer chain, expansibility		
factor, entropy, enthalpy and free energy of mixing of polymer		
solution		
2.2. Phase separation in polymer systems, De Gennes and Edwards tube		
models, self-avoiding random walk, scaling concepts in polymer		
systems, pearl model		
	45	2.2
Unit 3: Configuration and confirmation of macromolecules	15	2, 3
Content for classroom transaction (Sub-units)		
3.1. Pseudochirality, stereoregular polymers, tacticity, monotactic and		
ditactic polymers, geometrical isomerism, experimental methods for		
the determination of configuration, conformation of the single polymer molecule.		
3.2. Free rotation, rotation about single bonds, average chain dimensions,		
freely jointed chains, random flight model, derivation of end-to-end		
distance, real polymer chains, bond angle restrictions, steric		
restriction		
3.3. Conformation in crystals, micro conformation in solution, ideal coil		
molecules in solution, Compact molecules, optically active		
polyolefins, polyaminoacids, proteins, conformational transitions.		

Teaching and	Classroom Procedure: Learning Approach Consists of		
Learning	Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning		
Approach	Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests,		
	Blended learning, Quizzes		
Assessment	Mode of Assessment		
Types	A. Continuous Internal Assessment (CIA)		
	Internal Test		
	 Seminar Presentation in a related topic and review a journal paper in a particular area and present before peers 		
	B. Semester End examination		

REFERENCES

SUGGESTED READINGS

- 1. P. J. Flory, Principles of Polymer Chemistry, Cornel University Press, 1953.
- 2. H. G. Elias, Macromolecules: Structure and Properties, Springer, 1977.
- 3. A. Tager, Physical Chemistry of Polymer, 2nd Edn. Mir Publishers, 1978.
- 4. F. W. Billmeyer, Text Book of Polymer Science, 3rd Edn., Wiley, 1984.
- 5. I. Teraoka, Polymer Solutions: An Introduction to Physical Properties, Wiley-Inter-science, 2002.
- 6. M. G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edn. CRC Press, 2008.
- 7. F. A. Bovey, Polymer Configuration and Conformation, Academic press, 1969

CSM21E46 Main Group Elements Chemistry

School Name	School of Cher	nical Sciences	5				
Programme	M.Sc.	M.Sc.					
Course Name	Main Group El	Main Group Elements Chemistry					
Course Credit	2						
Type of Course	ELECTIVE						
Course Code	CSM21E46						
Course Summary & Justification	among the first applications. Le in the key conce to develop a ho science and tech to work in fro structured to in group elements to apply, analy	Main group elements, the most abundant elements in the universe were among the first developed in the modern era for diverse inter-disciplinary applications. Learning this elective course will provide a strong foundation in the key concepts of Main Group Elements, which will help the students to develop a holistic view of elemental composition and material design in science and technology. Understanding this subject will enable the students to work in frontier areas of multidisciplinary sciences. This course is structured to introduce students to the descriptive chemistry of the main group elements and its wide range of applications. The learners will be able to apply, analyse and evaluate the structure and bonding aspects of inorganic and organometallic compounds derived from main group					
Semester	I						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100	
Pre-requisite	Basic knowledge Groups and Peri		ic table and	arrangemen	ts of eleme	ents under	

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the classification of elements in the periodic table: general	U	1
	trends and properties of elements and structure of molecules		
2	Understand Acid-Base theory concepts and apply these principles to	U	3
	evaluate various chemical reactions		

3	Build a perspective on the origin, occurrence and extraction of group I	U	2		
	and group II elements and their different compounds.				
4	Understand the Chemistry of group III elements and apply Wade's rule	U <i>,</i> A	6, 7		
	and STYX number in rationalizing the structure of main group clusters				
5	Understand the diversity of oxides, sulfides, halides and hydrides of	U	2, 3,		
	group IV, V and VI elements		7		
6	Understand the preparation and properties of Halogens, Noble gas	U	4, 6,		
	compounds, Cyclic ethers, Crown ethers and Clathrates.		7		
*Ren	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Inter	est (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: Classification of elements in the periodic table	6	1
Content for Classroom Transaction (Sub-units)		
1.1. General trends in the properties of the elements		
1.2. Anomalous behaviour of the first member of the group elements		
1.3. Diborane, Wades', Isolobal principle, molecular geometry and molecular symmetry		
1.4. Electronic configuration of the di and tri atomic systems		
1.5. Bond types, bond properties, electron-deficient, precise and rich		
compounds		
Unit 2: Acids and Bases		
Content for Classroom Transaction (Sub-units)		
2.1. Theories of acids and bases, Bronsted Acidity and characteristics of		
Bronsted acids, Lewis acidity	4	2
2.2. Hard and Soft acids and bases, HSAB Principle		
2.3. Applications of acid-base chemistry (Super acids and bases)		
Unit 3: Group I and Group II elements	6	3
Content for Classroom Transaction (Sub-units)		
3.1. Occurrence and extraction; Group I and II elements and their		
compounds: hydrides, halides, oxides, hydroxides, sulphides,		
selenides, tellurides and related compounds		
3.2. Compounds of Oxo- acids, Nitrides and Carbides		
3.3. Solubility and Hydration		
3.4. Solutions in liquid ammonia		
3.5. Alkali and alkaline earth metals and its complexes		
3.6. Grignard reagents		
Unit 4: Chemistry of group III elements: Inorganic chains, rings and cages	9	4
Content for Classroom Transaction (Sub-units)	-	
4.1. Boranes, Boron halides, Diborane, Borazines, Borates, Boron clusters,		
Higher boranes and borohydrides		
4.2. Organoboranes: carboranes and metallocarboranes		
4.3. STYX numbers and WADE's rule		
4.4. Isolobal concept: molecular geometry and molecular symmetry		

Unit 5: Oxides of group IV elements	5	5
	5	J
Content for Classroom Transaction (Sub-units)		
5.1. Silicon-oxygen compounds, Silicates, Silicons, Zeolites, Silanes,		
Silylamines and extended Silicon-Oxygen compounds		
5.2. Carbides and Silicides		
5.3. Complexes of Ge, Sn and Pb		
5.4. Diamond, graphite and other forms of carbon		
Unit 6: General structure and characteristics of group V and VI elements	5	5
Content for Classroom Transaction (Sub-units)		
6.1. Hydrides of group V and VI elements		
6.2. Phosphanes, phosphorous halides and phosphazenes		
6.3. Oxohalides and Oxoacids of P, S, Se and Te		
Unit 7: Halogens and Noble gases	5	6
Content for Classroom Transaction (Sub-units)		
7.1. Oxoacids of halogens, Interhalogen compounds and polihalides		
7.2. Chemistry of noble gases, Compounds of Xenon (structure and		
reactivity)		
7.3. Clatharates		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction): Learning Approach Consists of Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning Interactive Instruction, Active co-operative learning, Seminar, Group Assignments, Progressive tests, Blended learning, Quizzes, Presentation by individual student/ Group representatives, and flipping.					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Internal Test					
	 Seminar Presentation on a related topic and review a journal 					
	paper in a particular area and present before peers.					
	B. Semester End examination					

REFERENCES

SUGGESTED READINGS

- 1. W. Henderson, Main Group Chemistry, Royal Society of Chemistry, 2000.
- 2. F. A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Edn. John Wiley and Sons, 2007.
- 3. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edn. Pearson Education, 2000.
- 4. M. Weller, T. Overton, J. Rourke, F. Amstrong, Inorganic Chemistry, 6th Edn. Oxford University Press, 2015
- 5. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, 1984.
- 6. K. F. Purcel, J. L. Kotz, An Introduction to Inorganic Chemistry, Saunders College, 1980.

CSM21E51 Bioinorganic Chemistry

SchoolName	School of Chemica	l Sciences						
Programme	M.Sc.							
Course Name	Bioinorganic Chem	istry						
Course Credit	2							
Type of Course	ELECTIVE							
Course Code	CSM21E51							
Course Summary & Justification	aspects of bioinorga metal ions and inorg about metal toxicity therapeutics. This	This course provides the students a detailed knowledge of fundamental aspects of bioinorganic chemistry. The students will understand the role of metal ions and inorganic complexes in biological processes. They will learn about metal toxicity as well as the application of inorganic complexes as therapeutics. This course will give a strong foundation to research metalloenzyme applications, inorganic biomaterials and pharmaceutical development						
Semester	11		-	-	-	-		
Total Student Learning Time (SLT)	Learning Approach	Learning Approach Lecture Tutorial Practical Others Total Learning Hours						
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100		
Pre-requisite	Basic knowledge of I	norganic Che	mistry and	Biology				

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Apply the basic principles in inorganic and general chemistry to bioinorganic chemistry.	A	1
2	Understand the importance of metals in biological systems.	U	3
3	Remember the structure and functions of metalloproteins and metalloenzymes	R	1
4	Explain the role of metal ions that are involved in electron transfer reactions in biological systems.	R	1
5	Identify the metal centers involved in oxygen transport in living organisms and comprehend the mechanism of this process.	U	1
6	Understand the biological role of Iron, copper, zinc and molybdenum	U	3, 7
7	Know the medical applications of bioinorganic compounds	U	3, 7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Bioinorganic Chemistry of Alkali and Alkaline Earth Metals	3	1, 2
Content for Classroom Transaction (Sub-units)		
1.1. Essential elements in biological systems		
1.2. Transport of ions across biological membranes		
1.3. Na ⁺ /K ⁺ pump		
1.4. Transport and structural role of calcium		
Unit 2: Bioinorganic Chemistry of Iron	10	3-6
Content for Classroom Transaction (Sub-units)		
2.1. Myoglobin		
2.2. Hemoglobin		
2.3. Cytochromes, Cytochrome P-450, Cytochrome c oxidase		
2.4. Transport and storage of Iron: Ferritin, Transferrin, Siderophores		
2.5. Catalase and peroxidase		
2.6. Non-heme protein: Hemerythrin and Fe-S clusters		
2.7. Model compounds of these proteins/enzymes		
Unit 3: Bioinorganic Chemistry of Copper, Zinc and Molybdenum	9	3-6
Content for Classroom Transaction (Sub-units)		
3.1. Type I, II and III Copper proteins		
3.2. Zn-containing enzymes		
3.3. Zn-finger proteins		
3.4. Alcohol dehydrogenase		
3.5. Xanthine oxidase		
3.6. Aldehyde Oxidase		
3.7. Model compounds of these proteins/enzymes		
Unit 4: Nitrogen fixation, Photosynthesis and Vitamin B ₁₂	4	3, 4, 6
Content for Classroom Transaction (Sub-units)		
4.1. Nitrogen fixation and nitrogenase enzyme		
4.2. Photosynthesis		
4.3. Vitamin B ₁₂ and B ₁₂ coenzymes		
4.4. Model compounds of these proteins/enzymes		
Unit 5: Metal ions and diseases	3	6
Content for Classroom Transaction (Sub-units)		
5.1. Role of Mn, Ni, Mo and Cr in biology		
5.2. Metallothioneins		
5.3. Metal toxicity		
5.4. Thalassaemia, Wilson disease and Sickle-cell anemia		
Unit 6: Effect of hazardous materials on the human body	3	5, 6
Content for Classroom Transaction (Sub-units)		
6.1. Generation and function of organic free radicals		
6.2. Action of reactive oxygen species (ROS) in biological systems		
6.3. Nitric oxide		
6.4. Cyanide and CO poisoning		

Unit 7: Medicinal bioinorganic chemistry	4	7
Content for Classroom Transaction (Sub-units)		
7.1. Metal ion-based (Pt, V, Au) drugs		
7.2. Chelation therapy		
7.3. Macrocyclic antibiotics		
7.4. Photodynamic therapy		
7.5. MRI imaging and contrast agents		
Unit 8: Biomimetics and Supramolecular Chemistry	4	1, 7
Content for Classroom Transaction (Sub-units)		
8.1. Biomimetic compounds		
8.2. Picket-fence porphyrin		
8.3. Crown ethers		
8.4. Cryptands and cryptates		
8.5. Calixarenes and cyclo-dextrins		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Lecture, Explicit Teaching, E-learning					
Approach	Interactive Instruction: Active co-operative learning, Seminar/ Presentation by					
	individual students, Assignments, Library work, Authentic learning, Quizzes					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	 Internal Test – MCQ-based and descriptive answer type 					
	 Seminar Presentation – the students will be given individual 					
	topics for the seminar presentation					
	Assignments					
	• Quizzes					
	B. Semester End examination					

REFERENCES

- 1. J. E. Huheey, R. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity, 4thEdn. Prentice Hall, 1997.
- 2. F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6thEdn. Wiley-Interscience, 1999.
- 3. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver and Atkins Inorganic Chemistry. 4th Edn. Oxford University Press, 2006.
- 4. J. D. Atwood, Inorganic and Organometallic Reaction Mechanism 2nd Edn. Wiley-VCH, 1997
- 5. E. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn. Wiley-India, 2007.
- 6. W. Kaim, B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons, 1994

CSM21E52 Chemical Bonding and Group Theory

SchoolName	School of Chemica	l Sciences					
Programme	M.Sc.						
Course Name	Chemical Bonding	Chemical Bonding and Group Theory					
Course Credit	2	2					
Type of Course	ELECTIVE						
Course Code	CSM21E52						
Course Summary & Justification	Learning the principles behind chemical bonding and the basics of group theory along with the applications. This course helps in familiarising the symmetry elements and symmetry operations and also identification of point groups associated with a molecule. It also helps to determine the molecular orbitals and hybridisation of molecules.						
Semester	11						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Eg. Authentic learning, Collaborative learning, Independent learning, etc.	40	0	0	60	100	
Pre-requisite	Basic knowledge of C	Quantum M	echanics				

СО	Expected Course Outcome		PSO No.	
No.		Domains		
1	An insight into chemical bonding	U	1, 3	
2	An insight into group theory	U	1, 2, 4, 5	
3	Understand bonding in diatomic molecules	А	1, 6, 7	
4	Identify point groups of the molecules	А	1, 3, 5	
5	Determining the molecular orbitals of molecules using group theory	А	4, 5	
6	Deriving hybridization of molecules using group theory A 4-7		4-7	
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CONTENT

COURSE CONTENT	Hours	CO No
Unit 1: Approximate methods in Quantum Chemistry	10	1
Content for Classroom Transaction (Sub-units)		
1.1. Variation and perturbation methods		
1.2. Linear variation method		
Unit 2: Diatomic Molecules and Chemical bonding	12	1, 3
Content for Classroom Transaction (Sub-units)		
2.1. Born-Oppenheimer approximation		
2.2. Valence bond and Molecular Orbital theory		
2.3. Hydrogen molecule ion and hydrogen molecule		
2.4. Molecular Orbitals of homonuclear diatomic molecules		
Unit 3: The simple Huckel Method and applications	12	1
Content for Classroom Transaction (Sub-units)		
3.1. The assumption of σ - π separability		
3.2. Independent π -electron assumption		
3.3. Setting up the Huckel secular determinant		
3.4. Solving the HMO determinantal equation for orbital energies		
3.5. Solving for the molecular orbitals		
3.6. Degenerate systems-cyclopropenyl system		
3.7. Charge distributions from HMO theory		
3.8. Simplifying generalizations		
3.9. Simple Applications		
Unit 4: Group Theory in Chemistry	13	2, 4
Content for Classroom Transaction (Sub-units)		
4.1. Symmetry elements and symmetry operations		
4.2. Symmetry point groups		
4.3. Definition of group		
4.4. Group multiplication table		
4.5. Abelian and degenerate groups.		
4.6. Cyclic groups		
4.7. Subgroups		
4.8. Representation of groups		
4.9. Generating representations from basis functions		
4.10. Reducible and irreducible representations		
Unit 5: Connection between Group theory and Quantum Mechanics	13	5, 6
Content for Classroom Transaction(Sub-units)		
5.1. Orthogonality in irreducible inequivalent representations		
5.2. Characters and character tables		
5.3. Resolving a reducible representation		
5.4. Identifying Molecular Orbital symmetries		
5.5. Generating symmetry orbitals		
5.6. Hybrid orbitals and localized orbitals		
5.7. Symmetry and integration		

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning,		
Approach	Library work, independent studies Presentation by individual student		

Assessment	Mode of Assessment		
Types	A. Continuous Internal Assessment (CIA)		
	Surprise test		
	 Internal Test – Objective and descriptive answer type 		
	Submitting assignments		
	• Seminar Presentation – select a topic of choice in the		
	concerned area and present in the seminar		
	B. Semester End examination		

REFERENCES

- 1. J. P. Lowe, Quantum Chemistry, 2nd Edn. Acdemic Press, 1993.
- 2. F. A. Cotton, Chemical Applications of Group Theory, 3rd Edn. Wiley-Interscience, 1990.
- 3. P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, 3rd Edn. Oxford University Press, 1999.
- 4. N. Levine, Quantum Chemistry, 5th Edn. Prentice Hall, 1999.
- 5. S. C. Rakshit, Molecular Symmetry Groups and Chemistry, Current Distributors, 1985.

CSM21E55 Biochemistry

School Name	School of Chemical Sciences					
Programme	M.Sc.					
Course Name Biochemistry						
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E55					
Course Summary & Justification	The course Biochemistry is designed for the study of the molecular composition of living cells, the organization of biological molecules within the cell, and the structure and function of these biological molecules. The biological macromolecules that this course focuses on are proteins, polysaccharides, and polynucleic acids (DNA and RNA), including the monomeric units of these macromolecules. The structures of these molecules, their functions, and the strong relationship between structure and function and the metabolism of these biomolecules are also included. We will also examine the structure and function of lipids, a fourth important type of biological molecule and a major component of cell membranes. Along with the study of lipids, we will examine biological transport in membranes. Other topics to be taught in the course include the energetics of biological processes and the kinetics and catalytic mechanisms of enzymes.					
Semester	Π					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
Pre-requisite	Authentic learning Collaborative learning Independent learning Basic knowledge of o	40	0	0	60	100

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the structure-function relationship of biomolecules, and their importance with regard to maintenance and perpetuation of the living systems.	U	1
2	Be familiar with the enzymes (biocatalysts), and their salient attributes including unique conformation and amazing catalytic properties.	A	3

3	Analyze the various types of weak interactions between the biomolecules	Ар	1, 6
4	Correlate how biomolecules such as proteins, carbohydrates, lipids, nucleic acids are formed from the simple precursors and their role in different metabolic pathways	An	1, 2, 6
5	Interpret the structure-function relationships of the proteins, carbohydrates, lipids, and nucleic acids.	E	2, 7
6	Relate the structure of DNA with its function in Replication and gene expression that includes both transcription and translation.	U	3, 7
7	Understand the difference between the water-soluble and fat-soluble vitamins and their key role in the metabolism as coenzymes.	E	7
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)		

COURSE CONTENT	Hours	CO No
Unit 1: INTRODUCTION TO BIOMOLECULES Content for Classroom Transaction (Sub-units)	12	1-7
1.1. Structure and functions of biomolecules-water as a biological solvent		
1.2. Amino Acids, peptides and Proteins: Introduction, Classification optical isomerism, chemical properties, acid-base properties. Peptide bond formation and properties. Levels of protein structure (brief mention of primary, secondary, tertiary & quaternary structures), Denaturation of proteins- Ramachandran plot-Determination of Primary Structure - sequencing strategies N-terminal and C-terminal sequencing. Chemical synthesis of peptides-Merrifield Solid phase synthesis enzymes: Introduction, classification of enzymes, mechanism of enzyme action, enzyme kinetics, Enzyme kinetics, Michaelis – Menten equation and graphical evaluation of K _M and V _{max} .		
1.3. Carbohydrates: Structure of monosaccharides- Aldoses and ketoses- Stereo-isomerism of sugars; Ring structures and anomeric forms, mutarotation, Structure, occurrence and biological importance of monosaccharides, oligosaccharides and polysaccharides namely glycogen, starch, cellulose, chitin, agar, pectins, proteoglycans. Fischer projections, Haworth structures, pyranose and furanose structures, Anomers, Epimers, Chair and boat conformations, R and S configuration. Structure and functions of sugars, homo and heteropolysaccharides, glycoconjugates, glycoproteins		
1.4. Nucleic acids: Purine and pyrimidine bases, Nucleotides and nucleic acids, Composition of DNA and RNA, structural features of nucleic acids, DNA double helix, Watson and Crick model denaturation and annealing of DNA; Structures and roles of different types of RNA; Replication of DNA, Gene expression, Protein Biosynthesis, DNA Repair, Recombinant DNA techniques		

Unit 2: Fatty acids and Lipids	8	1, 3, 4,
Content for Classroom Transaction (Sub-units)		5, 7
2.1. Classification of lipids; oils, fats, and waxes		
2.2. Occurrence and properties of fatty acids, esters of fatty acids,		
Phosopholipids, glycolipids, sphingolipids, cerebrosides and		
gangliosides		
2.3. Structure of membranes		
2.4. Transport across membranes active and passive transports		
Unit 3: Vitamins	4	1, 7
Content for Classroom Transaction (Sub-units)	-	_, :
3.1. Classification-water soluble vitamins and fat-soluble vitamins		
3.2. Vitamins as co-factors in enzyme catalysis		
Unit 4: Bioenergetics and metabolism	8	1, 4, 7
Content for Classroom Transaction (Sub-units)		
4.1. Biochemical thermodynamics, the energy changes accompanying		
biochemical reactions		
4.2. Overview and selected individual and important oxidative		
pathways.		
4.3. Glycolysis, TCA cycle-pentose phosphate pathway.		
4.4. Citric acid cycle: energetic and amphibolic nature.		
4.5. Regulatory aspects of TCA cycle and glycolysis.		
4.6. Photosynthetic electron transport and phosphorylation and CO ₂		
fixation.		
4.7. Oxidative phosphorylation and electron transport		
Unit 5: Transfer of genetic information	8	1, 3, 6,
Content for Classroom Transaction (Sub-units)		7
5.1. Chemistry of nucleic acids, nucleotide, nucleoside, cyclic AMP.		
5.2. Assembly of DNA, types of RNA.		
5.3. Replication of DNA: enzymology in eucaryotes and bacteria,		
translation, genetic code, protein biosynthesis.		
5.4. Regulation of gene expression. Repair of DNA and recombinant DNA		
concept		

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning,		
Approach	Library work, independent studies Presentation by individual student		
Assessment	Mode of Assessment		
Types	A. Continuous Internal Assessment (CIA)		
	Surprise test		
	 Internal Test – Objective and descriptive answer type 		
	 Submitting assignments 		
	• Seminar Presentation – select a topic of choice in the		
	concerned area and present in the seminar		
	B. Semester End examination		

References

- D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, 6th Edn. 2014
 J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, 6th Edn. 2006
- 3. R. H. Garret, C. M. Grisham, Biochemistry, Brooks/Cole, 6th Edn. 2016
- 4. G. L. Zubay, Biochemistry, Wm. C. Brown Publishers, 1998

CSM21E56 Natural and Synthetic Polymers

School Name	School of Chemical Sciences						
Programme	M.Sc.						
Course Name	Natural and Synthetic	Polyme	rs				
Course Credit	2						
Type of Course	ELECTIVE						
Course Code	CSM21E56						
Course Summary & Justification	Natural and Synthetic Polymers course is designed to provide a comprehensive understanding of all the important types of natural and synthetic polymers and related topics. This will enable the learners to acquire sufficient knowledge and awareness about different classes of polymer substances. A constructive discussion based on a broad classification of polymeric materials as thermoplastic, thermosetting resins, rubber, fiber forming materials, etc are also included. The syllabus mainly covers the synthesis, properties and applications of important polymeric materials including natural, synthetic, and semi-synthetic polymers. After completion of this course, students are expected to have a detailed understanding of important natural and synthetic polymeric materials and to acquire sufficient knowledge and ability to identify and differentiate						
Semester	11		•				
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Others include Group discussions, Seminars, Independent Learning, etc.	40	0	0	60	100	
Pre-requisite	Basic awareness of vario	Basic awareness of various types of polymers.					

CO No.	Expected Course Outcome	Learning domain	PSO No
1	To familiarize with various types polymers	R, U	1, 2, 6, 7
2	To Acquire sound knowledge about the fundamentals and importance of various Natural and synthetic polymers	U, I	1, 6, 7
3	To classify the polymers based on structure, functionality and properties.	U, An	2, 6, 7
4	To understand the peculiarities of individual polymer materials and compare each other	U, A, E	1, 6, 7

5	To Evaluate and correlate various polymer properties for specified	A, An, E, C	1, 2, 5,				
	applications		6, 7				
*Rer	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest						

(I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Introduction	4	1-5
Comparison between Natural and synthetic polymers. Polymer as plastics,		
rubbers and fibres. A detailed account of the Synthesis, properties and		
applications of the following Industrial polymer		
Unit 2: Polyolefins/Vinyl polymers	7	
LDPE, LLDPE, HDPE, UHMWPE, chlorinated and chloro-sulphonated		
polyethylenes, polypropylene. PVC, PVA, PVAc		
Unit 3: Acrylic polymers	4	
PMMA, polyacrylonitrile, polyacrylic acid, cyanoacrylates.		
Unit 4: Styrenic polymers	6	
Polystyrene, high impact polystyrenes-rubber modified polystyrenes, SAN,		
ABS, foamed polystyrene-thermocole.		
Unit 5: Fluorocarbon polymers	4	
PTFE, PCTFE, PVF, PVDF etc.		
Unit 6: Thermoplastic condensation polymers	5	
Polyesters-PET, PBT, Poly amides-nylons, acrylics, fiber forming polymers		
Unit 7: Thermosets	5	
Unsaturated polyesters-epoxy resins, PF, UF and MF. various prepolymer		
products, curing agents for these resins.		
Unit 8: Biopolymers	9	
Carbohydrates, Starch, cellulose, cellulose derived semisynthetic polymers,		
Poly amino acids, Proteins, Natural rubber etc.		

Teaching and Learning Approach	Classroom Procedure (mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Peer teaching and learning, Technology-enabled learning, Library work				
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (40%) Internal Tests, Assignments Seminar Presentation Review Report B. End Semester Examination (60%)				

References

1. J. A. Brydson, Plastic Materials, Butterworth-Heinemann, 7th Edn. 1998

Suggested Readings

2. F. W. Billmeyer, Text Book of Polymer Science, Wiley interscience, 1976.

- 3. J. M. G. Cowie, Polymers: Chemistry & Physics of Materials, International Text Book Company Ltd, 1974.
- 4. D. Feldman, A. Barbalata, Synthetic Polymers, Springer, 1996.
- 5. R. W. Hyson, specialty polymers, Chapmann and Hall, 1987
- 6. A. H. Frazer, High Temperature Resistant Polymers. Wiley interscience, 1963
- M. Blow, C. Hepburn, Rubber Technology and Manufacture, 2nd Edn. Butterworth Scientific, 1982
- 8. H. F. Mark, Encyclopaedia of polymer science and engineering, Vol 9, Wiley intersciences, 1987

CSM21E57 Medicinal Chemistry

School Name	School of Chemica	Sciences					
Programme	M.Sc.						
Course Name	Medicinal Chemistry						
Course Credit	2						
Type of Course	ELECTIVE						
Course Code	CSM21E57						
Course Summary & Justification	Organic Chemistry of chemistry is growing caused by microorga etc. This warrants a new generation of c with a comprehens medicinal chemistry In this course, in ado students will be equi	Medicinal Chemistry has grown as an important and distinct branch of Organic Chemistry over several decades. The importance of medicinal chemistry is growing day by day due to the emergence of new diseases caused by microorganisms, changes in lifestyle of human beings, pollution, etc. This warrants a good understanding of medicinal chemistry for the new generation of chemists. This course is designed to provide students with a comprehensive understanding of various aspects of modern medicinal chemistry and its applications. In this course, in addition to learning the basics of medicinal chemistry, students will be equipped with designing new scaffolds for drug synthesis Understanding this subject will enable the students to work in frontier					
Semester	П						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning400060100CollaborativeIndependentIndependentIndependentIndependentIndependentIndependent						
Pre-requisite	Understanding of b reaction mechanism	asic organi	c reaction	s, basic ste	ereochem	istry, and	

CO No.	Expected Course Outcome		PSO No.
NO.		Domains	NO.
1	Acquires the ability to understand the basics of medicinal	U	1
	chemistry		
2	Equip the student with sufficient skill to understand the different	U	2, 3
	stages in drug discovery enabling to work in discovery research.		
3	Acquires the basics of cancer research and enable to work in		1, 2, 3,
	cancer research.		6
4	Acquires the basics of antibiotics.	U	1

5	Acquires the basics of antiviral and antifungal diseases and enables to work in drug research.	A	1, 2, 6	
6	Acquires the basics of analgesics and anti-inflammatory drugs. Provide students with the skills required to perform in R & D drug research.	S	1, 2, 6	
7	Acquires the basics of Hyperacidity and related diseases Provide students with the skills required to perform in R & D drug research.	S	1, 2, 6	
8	Acquires the basics of cardiovascular diseases. Provide students with the skills required to perform in R & D drug research.	S	1, 2, 6	
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CO	NTENT	Hours	CO No
Unit 1: Basi	cs of medicinal chemistry	8	1
1.1. A b	rief history of drugs		
1.2. Dev	elopment of medicinal chemistry		
1.3. Bas	ic principles		
1.4. Bas	ic terminology in drug Discovery		
1.5. IC5	0		
1.6. Log	Р		
1.7. Log	D		
1.8. MIC			
1.9. Effi	cacy		
1.10.	Adsorption		
1.11.	Distribution		
1.12.	Metabolism		
1.13.	Excretion		
1.14.	Drug and disease classification		
1.15.	Drug targets		
1.16.	Pharmacology		
1.17.	Pharmacokinetics		
1.18.	Generic and trade names		
1.19.	Lipinski rule		
1.20.	Dose-response curves		
linit 2. Star		4	2
-	es in drug discovery and QSAR	4	2
	ural and synthetic drugs		
2.3. Intr	oduction to process research		
Unit 3: Cano	cer research	6	3
3.1. Can	cer and anti-cancer agents		
3.2. Aro	matase inhibitors for cancer treatment		
			<u> </u>
Unit 4: Anti 4 1 Ant	biotics ibacterials (Cipro and Zyvox)	6	4
	ictam antibiotics (Penicillins)		
•			
	racyclines and Quinolones (Fluoroquinolones) ic knowledge of TB and its treatment		
4.4. Bas			

Unit 5: Antiviral and Antifungal agentes	6	5
5.1. Antiviral drugs (Tamiflu)		
5.2. Antifungal drugs (Fluconazole)		
Unit 6: Analgesics and Anti-inflammatory drugs	6	6, 7
6.1. Analgesics (Cimetidine)		
6.2. Opioid analgesics Morphine		
6.3. Anti-inflammatory drugs (Celebrex)-NSAIDS (Ibuprofen, Naproxen)		
Unit 7: Proton pump inhibitors	6	7
7.1. Hyperacidity		
7.2. Peptic Ulcer disease (PUD)		
7.3. ATPase inhibitors-Omeprazole and Esomeprazole (Nexium)		
7.4. Gastroesophageal reflux disease (GERD)		
Unit 8: Cardiovascular diseases	8	8
8.1. Hypertension		
8.2. Cardiovascular drugs-Statin drugs		
8.3. ACE inhibitors		
8.4. Calcium channel inhibitors		
8.5. Cholesterol absorption inhibitors		

Teaching	Classroom Procedure: Learning Approach Consists of						
and Learning	Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning,						
Approach	interactive Instruction, Active co-operative learning, Seminar, Group						
	Assignments Authentic learning, Library work and Group discussion,						
	Presentation by individual student/ Group representative.						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	 Internal Test – One MCQ based and on extended answer type 						
	 Book review – every student to review a seminal work on Alternative Education and submit a report 						
	 Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 						
	 Field visit report – each student shall individually or in a group visit an institution with demonstrated experience of 						
	alternative thoughts and prepare a report						
	B. Semester End examination						

- 1. G. L. Patrick, An introduction to Medicinal Chemistry, Oxford University Press, 1995
- 2. G. Thomas, Fundamentals of Medicinal Chemistry, Wiley, 2003

SUGGESTED READINGS

- 1. W. Sneader, Drug Discovery, A History, John Wiley, England, 2005
- 2. X-T Liang, W-S Fang, Medicinal Chemistry of Bioactive Natural Products, Wiley, 2006
- 3. A. Kar, Medicinal Chemistry, New age international publishers, New Delhi, 2005
- 4. R. S. Vardanyan, V. J. Hruby, Synthesis of Essential Drugs, Elsevier, 2006

5. C. G. Wermuth, The Practice of Medicinal Chemistry, Academic Press, Oxford, 2003.

CSM21E58 Chemistry of Heterocyclic Compounds

School Name	School of Chemic	al Sciences				
Programme	M.Sc.					
Course Name	Chemistry of Het	erocyclic Co	ompounds	5		
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E58					
Course Summary & Justification	The study of the chemistry of heterocyclic compounds introduces the basic idea of heterocyclic chemistry. Through this learning, it is possible to acquire relevant knowledge about various heterocyclic compounds, their preparation and properties. The syllabus also discusses the conformational studies of those compounds. Understanding this subject will enable the students to work in frontier areas of heterocyclics.					
Semester	П					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100
Pre-requisite	Basic knowledge at	pout chemis	try at the Ba	achelors lev	/el	

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Gain a theoretical understanding of the fundamentals of Heterocyclic compounds	U	1, 6, 7
2	Classify and write the nomenclature of various heterocyclic molecules	U, An	2, 3
3	Explain the reactivity and other properties of heterocyclic compounds.	U, An	4, 5
4	Develop synthetic strategies for heterocyclic compounds.	An, E	1, 3, 5
5	Application of heterocycles in drug synthesis.	Ар	5, 6, 7
6	Gain an idea of the conformational analysis of heterocyclic compounds	U, An	3, 4
	nember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), rest (I) and Appreciation (Ap)	Create (C),	Skill (S),

COURSE CONTENT	Hours	CO No
 Unit 1: Heterocyclic compounds 1.1. Introduction and nomenclature of heterocycles- monocyclic, fused and bridged systems. 1.2. Classification of heterocycles based on structure-General properties of heterocycles- Three and four-membered heterocycles: azirine, oxirane, azetidine, oxetene, oxetane and thietane: properties and synthesis. 	10	1, 2, 3, 6
 Unit 2: Five-Membered Heterocyclic compounds 2.1. Five membered heterocyclic systems: pyrrole, furan, thiophene. 2.2. Five membered heterocycles with two or more hetero atom spyrazole and imidazole, isoxazole, thiazole and triazole-properties and synthesis. 2.3. Benzofused systems- indole, indolizine, carbazole benzofuran, dibenzofurans 	8	1-6
 Unit 3: Six and Seven Membered Heterocyclic compounds 3.1. Heterocyclic analogs of six and seven-membered rings and fused systems: 3.2. Synthesis and reactions of pyridine, pyran, quinoline, isoquinoline, acridine and phenanthridine. 2- and 4- pyrones, benzopyran, and benzopyrones, azepine, thiepine, diazepine. 3.3. Synthesis and chemical properties. Compounds with two or more than two hetero atoms; pyridazine, pyrimidine, pyrazine, oxazine, thiazine, dioxane, quinazoline, quinaxaline, cinnoline, pteridine, triazenes. 	10	1-6
Unit 4: Non- aromatic Heterocycles 4.1. Non-aromatic heterocycles - Aziridines, Thiiranes, oxiranes, oxetane, azetidine, THF, pyrrolidone, piperidine, tetrahydropyran - preparation and their applications	6	2, 3, 6
Unit 5: Conformational analysis of heterocyclic compounds 5.1. Strain - bond angle and torsional strains and their consequences in small ring heterocycles. Conformation of 6-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,3-diaxial interaction.	6	1, 2, 6

Teaching	Classroom Procedure: Learning Approach Consists of						
and Learning	Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning,						
Approach	Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests,						
	Blended learning, Quizzes						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	Internal Test						
	• Seminar Presentation in a related topic and review a journal						
	paper in a particular area and present before peers						
	B. Semester End examination						

SUGGESTED READINGS

- 1. R. M. Acheson, An introduction to the chemistry of Heterocyclic compounds, Wiley India Pvt. Ltd. 3rd Edn. 2008
- 2. T. Eicher, S. Hauptmann, The Chemistry of Heterocycles.
- 3. J. A. Joule, K. Mills, G. F. Smith, Heterocyclic Chemistry.
- 4. T. L. Gilchrist, Heterocyclic Chemistry.
- 5. T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications 3rd Edn. 1999.
- 6. L. D. Quin, J. A. Tyrell, Fundamentals of Heterocyclic Chemistry: Importance in Nature and the Synthesis of Pharmaceuticals, 2010.

CSM21E59 Chemistry of Coordination Compounds

School Name	School of Chemical S	ciences				
Programme	M.Sc.					
Course Name	Chemistry of Coordin	Chemistry of Coordination Compounds				
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E59					
Course Summary	The course aims to he	elp the stu	idents deta	il the bond	ding, struc	tures and
& Justification	properties of coordina	tion comp	lexes. The	description	of variou	s bonding
	theories with emphas	theories with emphasize on the spectral and magnetic properties of				
	coordination complexe	s helps to	predict the	characteris	tic proper	ties of any
	transition metal compl	ex. Differe	nt reaction	s in transiti	on metal o	complexes
	with a supportive m	echanism	will be d	iscussed. 1	he applic	cations of
	coordination chemistry in various fields will also be described in the					
	conclusion part to understand the importance of learning this course.					
Semester	II					
Total Student	Learning Approach	Lecture	Tutorial	Practical	Others	Total
Learning Time						Learning
(SLT)						Hours
	Authentic learning	40	0	0	60	100
	Collaborative					
	learning					
Due ve vulaite	Independent learning					
Pre-requisite	Basic knowledge of Inc	organic Che	emistry			

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	To understand the structure and bonding of coordination complex	U	1
2	To write down the IUPAC name of the complexes	А	1, 2
3	To predict the shape of coordination complexes using VBT & CFT	А	1, 2
4	To identify the types of isomers in coordination compounds	А	1, 2
5	To use ligand field theory to understand the spectral and magnetic		1, 2, 3
	properties		
6	To estimate the CFSE of any complex and predicts low spin/high spin	E	1, 2, 3
	nature		
7	Should be able to derive the term symbol for any electronic	E	1, 2, 3
	configuration		
8	Should be able to draw Orgel diagrams and recognise the electronic		1, 2, 3
	transition in the spectra of any coordination complexes		

9	To be able to describe the stability of coordination complexes by the use of formation constants and to calculate thermodynamic parameters from them.	An	1, 2, 3				
10	To predict the products formed after electron transfer reaction between two coordination complexes.	An	1, 2, 3				
11	To familiarized with some applications of coordination compounds in daily life	U	5				
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT	Hours	CO No
Unit 1: Theories of Bonding in Coordination Compounds	10	1-6
Content for Classroom Transaction (Sub-units)		
1.1. Valence Bond theory		
1.2. Crystal Field Theory		
1.2.2. Splitting of d orbitals in different fields		
1.2.3. Crystal field splitting and crystal field stabilization energy		
1.2.4. Spectrochemical series		
1.2.5. Jahn Teller distortion		
1.2.6. Nephelauxetic effect		
1.2.7. Two-dimensional spectrochemical series		
1.2 Ligand Field Theory		
1.3. Molecular Orbital theory-MO energy level diagram for octahedral		
complexes without and with π -bonding		
Unit 2: Electronic Spectra of Complexes	12	7, 8
Content for Classroom Transaction (Sub-units)		
2.1. Term symbols		
2.2. d-d transition and charge transfer transition		
2.3. Selection rules for electronic transition		
2.4. Effect of spin-orbit coupling and vibronic coupling on electronic		
transition		
2.5. Orgel diagrams		
2.6. Applications of electronic spectra in the structural studies of complexes		
Unit 3: Magnetic Spectra of Metal Complexes	10	9
Content for Classroom Transaction (Sub-units)		
3.1. Thermal population of different energy levels-large and small multiplet widths		
3.2. Spin-only magnetic moment		
3.3. Orbital contribution to magnetic moment		
3.4. Antiferromagnetism		
3.5. Applications of magnetic data in the structural studies of complexes		
Unit 4: Kinetics and Reaction Mechanism of Coordination compounds	15	10, 11
Content for Classroom Transaction (Sub-units)		
4.1. Lability and inertness		
4.2. Ligand displacement reactions in octahedral and square complexes		
4.3. Trans effect theories and applications		
4.4. Electron transfer reactions-outer sphere and inner sphere processes		

Unit 5: Applications of metal complexes	3	11
Content for Classroom Transaction (Sub-units)		
5.1. Applications of coordination compounds in analytical chemistry		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Lecture (Chalk and Blackboard teaching), Explicit Teaching, E-					
Approach	learning (Google classroom)					
	Interactive Instruction: Active co-operative learning, PowerPoint Presentation					
	by student, Assignments, Library work, Authentic learning, Quizzes					
Assessment	Mode of Assessment					
Types	1. Continuous Internal Assessment (CIA)					
	 Internal Test – MCQ-based and descriptive answer type 					
	• Seminar Presentation – the students will be given individual					
	topics for seminar presentation					
	Assignments					
	Quizzes					
	2. Semester End examination					

- 1. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3rd Edn. Wiley, 1972.
- 2. J. E. Huheey, R. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity, 4th Edn. Prentice Hall, 1997.
- 3. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn. John Wiley & Sons, 2006.
- 4. J. D. Lee, Concise Inorganic Chemistry, 5th Edn. Chapman & Hall1996.
- 5. A. Earnshaw, Introduction to Magnetochemistry, Academic Press, 1968.

CSM21E71 Fundamentals of Electrochemistry

School Name	School of Chemica	Sciences				
Programme	M.Sc.					
Course Name	Fundamentals of E	lectrocher	nistry			
Course Credit	2					
Type of Course	ELECTIVE	ELECTIVE				
Course Code	CSM21E71					
Course Summary & Justification	and acid-base theo potentials, application phenomena, electro To impart knowledg kinetics, explain varion cell, to apply the knowledg over potential, electrocatalysis and	Electrochemistry: Topics to be covered include: ion activity, ionic equilibria and acid-base theory, electrolytic conduction, reversible (equilibrium) potentials, applications of electrode potentials and cell e.m.fs, interfacial ohenomena, electrode processes, exploitation of electrode processes. To impart knowledge in advanced electrochemistry to analyze electrode kinetics, explain various over potential involved during the operation of the cell, to apply the knowledge to calculate electrochemical cell parameters, over potential, electrochemical cells as sources of energy and in electrocatalysis and electro organic synthesis				
Semester Total Student	III	Lecture	Tutorial	Practical	Others	Total
Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Learning Hours
	Authentic learning Collaborative learning Independent learning	40		0	60	100
Pre-requisite	Bachelors degree subsidiaries.	in chemis	try, with	physics a	nd math	ematics as

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	After completion of the course, the learner can be able to understand: Basic principles of laws of electrochemistry, electrodes, EMF measurement, potentiometric/conductometric titrations and their applications.	U	1
2	The learner should be able to apply theories in electrochemistry to analyze electrode kinetics, explain various over potential involved during the operation the cell, to apply the knowledge to calculate electrochemical cell parameters, and over potential.	A	6, 7
3	To impart knowledge of advanced electrochemistry.	Ар	2

2	4	The students will acquire knowledge of potentiometric, coulometric, and voltametric methods of analysis.	A	4
, ,	5	Build a perspective on the applications of electrochemistry in daily life like pH, buffers, colloids, etc.	U	6, 7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Ion Activity	5	1
1.1. Content for Classroom Transaction (Sub-units)		
1.2. Ion-ion and ion-solvent interaction		
1.3. The electrical potential in the vicinity of an ion		
1.4. Electrical potential and thermodynamic functions - the Debye-Huckel		
equation, limiting and extended forms of Debye-Huckel equation,		
applications of Debye-Huckel equation		
1.5. Ion association		
Unit 2: Ionic Equilibria and Acid-base Theory	5	1, 4
2.1. Classical theory, Bronsted-Lowry concept of acids and bases		
2.2. Strengths of acids and bases in aqueous solution		
2.3. Hydrolysis, the extent of acidity - the pH scale, buffer systems		
2.4. Acid-base indicators		
2.5. General acid-base theory and non-aqueous solvents.		
Unit 3: Electrolytic Conduction	5	1, 5
3.1. Significance of conductivity data		
3.2. Conductivity and transport properties of ions		
3.3. Relationships between molar conductivity and concentration		
3.4. Conductivity at high field strengths and high frequency of alternation of		
the field		
3.5. Electrical migration and transport numbers		
3.6. Applications of conductivity measurements.		
Unit 4: Reversible (equilibrium) Potentials	5	2, 5
4.1. Comparison of chemical and electrochemical reactions		
4.2. Reversible electrode potentials		
4.3. The hydrogen scale, other reference electrodes, electrochemical		
concentration cells		
4.4. Concentration cells without liquid junctions, concentration cells with		
liquid junctions.		
Unit 5: Applications of Electrode Potentials and Cell e.m.fs	5	2, 5
5.1. Thermodynamics of cell reactions		
5.2. Determination of standard potentials and mean ion activity coefficients		
5.3. Transport number determinations		
5.4. Determination of equilibrium constants		
5.5. The determination of pH, other electrochemical detectors, and		
potentiometry.		

Unit 6: Interfacial Phenomena	5	1, 4
6.1. Significance of the interface between conduction phases, the electrode		
double layer		
6.2. Polarized and non-polarized electrodes, the diffuse double layer,		
electrocapillarity		
6.3. Electrokinetic phenomena		
6.4. The behaviour of colloidal systems, and membrane equilibria.		
Unit 7: Electrode Processes	5	2, 5
7.1. Non-equilibrium electrode potentials, electrode kinetics, Nernst		
equation		
7.2. Dependence of current density on overvoltage – the Tafel equation		
7.3. electrolysis and overvoltage, hydrogen and oxygen overvoltage		
theories of hydrogen overvoltage.		
Unit 8: Exploitation of Electrode Processes	5	3, 5
8.1. Polarography and voltammetry, mixed potentials and double		
electrodes		
8.2. Corrosion: concept and importance, mechanism of corrosion and		
pourbaix diagrams		
8.3. Electrochemical processes as sources of energy, fuel cells		
8.4. Electrocatalysis and electrosynthesis.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	 Internal Test – On MCQ based and on extended answer type 			
	• Seminar Presentation – a theme is to be discussed and identified			
	to prepare a paper and present in the seminar			
	B. End semester examination			

1. R. Crow, Principles and Applications of Electrochemistry, 3rd Edn. Chapman and Hall, 1988.

SUGGESTED READINGS

- 1. S. Glasstone, An Introduction to Electrochemistry, Maurice Press, 2008
- 2. J. O. M. Bockris, A. K. N. Reddy, Modern Electrochemistry Vol. I & II, Springer, 1988.
- 3. V. S. Bagotsky, Fundamentals of Electrochemistry, 2nd Edn. Wiley & Sons, 2005
- 4. S. Iqbal, Textbook of Electrochemistry, Discovery Publishing House Pvt. Ltd. 1993

CSM21E72 Computational Methods in Chemistry

School Name	School of Chemica	Sciences				
Programme	M.Sc.					
Course Name	Computational Me	thods in C	hemistry			
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E72					
Course Summary & Justification	Chemistry is traditionally an experimental science dealing with the structure, functions and reactivity of molecules and the methods for making them from convenient starting materials. With the advent of quantum mechanics, a better understanding of atomic and molecular structure was initiated but significant progress was delayed because of the difficulties in calculating all the necessary multicenter integrals and the necessity of diagonalizing large matrices. With the arrival of faster and even faster computers, these calculations are becoming possible and getting more accurate. A study of large molecular clusters and liquids was also initiated using interaction potentials and classical equations of motion. Now these methods are extended to surfaces, multiple phases and topics covering various aspects of molecular biology. In the present course, we shall investigate many aspects that touch upon the issues					
Semester						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	20	0	60	120
Pre-requisite	Basic knowledge of C	C programm	ning and Nu	merical me	thods	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	An insight into C programming	U	1
2	An insight into Numerical methods	U	1
3	An insight to non-numerical algorithms	А	1
4	Determining the values of Taylor series expansions	А	1

5	Understanding of Stochastic programming	А	1, 2			
6	Understand basic concepts of Computational Chemistry	U	1, 3, 6			
*Ren	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),					
Inter	Interest (I) and Appreciation (Ap)					

COURSE CONTENT	Hours	CO No
Unit 1: Mathematical preliminaries	5	2, 4
Content for Classroom Transaction (Sub-units)		
1.1. Elementary combinatorics		
1.2. Stirling's approximation		
1.3. Method of Lagrange multipliers		
1.4. Introduction to probability		
1.5. Gamma functions		
1.6. Power series method		
Unit 2: Physics preliminaries	3	1, 2
Content for Classroom Transaction (Sub-units)	5	1, 2
2.1. Classical mechanics		
2.1.1. Newtonian, Lagrangian and Hamiltonian approach to		
mechanics		
2.2. Quantum Mechanics		
2.2.1. Hydrogen atom, rigid rotor and harmonic oscillator		
Unit 3: Classical and quantum statistics	3	3
Content for Classroom Transaction (Sub-units)		
3.1. Bose-Einstein statistics		
3.2. Fermi Dirac statistics		
3.3. Maxwell Boltzmann statistics		
Unit 4: Ensemble theory	4	3, 5
Content for Classroom Transaction (Sub-units)	7	5,5
4.1. Gibb's hypothesis		
4.1. Concept of phase space		
4.3. Postulate of equal apriori probabilities		
4.3. Postulate of equal aprior probabilities 4.4. Ensemble averages		
4.4. Ensemble averages 4.5. Partition function		
Unit 5: Canonical ensemble	3	3, 5
Content for Classroom Transaction (Sub-units)		
5.1. Evaluation of undetermined Lagrange multipliers		
5.2. Boltzmann's hypothesis		
Unit 6: Other ensembles	2	3, 5
	2	3, 5
Content for Classroom Transaction (Sub-units) 6.1. Micro canonical ensemble		
6.2. Grand canonical ensemble		

Unit 7: Ideal	gas	3	3, 5
Content for C	Classroom Transaction (Sub-units)		
7.1. Deriv	vation of PV= nRT from first principles		
7.2. Expr	essions for heat capacity at constant volume and constant		
pres	sure.		
Unit 8: Mole	cular interactions in liquids	4	3, 5
	Classroom Transaction (Sub-units)	4	3, 5
	al distribution function g(r)		
	ulation of g(r) using Monte Carlo method		
	lation of g(r) using molecular dynamics approach		
0.5. Calci			
Unit 9: Chem	ical equilibrium	3	3, 5
Content for C	Classroom Transaction (Sub-units)		
9.1. Conr	nection between the equilibrium constant of gas phase		
reac	tions and the canonical partition function		
Unit 10: Solid		5	6
		5	0
10.1.	Classroom Transaction (Sub-units)		
	Einstein and Debye theory of solids.		
10.2.	Phonons		
Unit 11: Met	als and Photons	5	6
Content for Classroom Transaction (Sub-units)			
11.1.	Fermi function and Fermi energy.		
11.2.	•••		
11.3.	An ideal gas of photons (black body radiation)		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning,
Approach	Library work, independent studies Presentation by individual students,
	Computational lab
Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	Surprise test
	 Internal Test – Objective and descriptive answer type
	 Submitting assignments
	 Seminar Presentation – select a topic of choice in the
	concerned area and present in the seminar
	Performance in Lab
	B. Semester End examination

- 1. W. Kernigan, D. M Ritchie, The C programming Language, 2nd Edn. Prentice Hall, 1988.
- E. Kreyszig, Advanced Engineering Mathematics, 10th Edn., John Wiley and sons, 2011
- 3. F. Jensen, Introduction to Computational Chemistry, 2nd Edn. Wiley, 2007.
- 4. E. G. Lewars, Computational Chemistry, Introduction to Theory and Application of Molecular and Quantum Mechanics, Springer, 2004.

CSM21E74 Surface Chemistry and Catalysis

School Name	School of Chemica	l Sciences				
Programme	M.Sc.					
Course Name	Surface Chemistry	and Catal	ysis			
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E74					
Course Summary & Justification	these techniques car reactivity of surface heterogeneous cata the chemistry of het main types.	Introduce the main techniques of surface science and understand how these techniques can be used to investigate the structure, composition, and reactivity of surfaces with a particular focus on systems of relevance to heterogeneous catalysis. To introduce the important general concepts of the chemistry of heterogeneous catalysis and to describe and illustrate the main types.				
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	00	0	60	100
Pre-requisite	Bachelors degree in subsidiaries.	chemistry,	with physic	cs and math	nematics a	S

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To introduce the concepts of adsorption and desorption	U	1
2	To explain many of the proposed hypotheses of surfaces in terms of fundamental concepts.	A	3
3	Be able to apply the knowledge to predict and rationalize the properties of catalysts.	Ар	1, 2
4	To understand the role of a catalyst in relation to thermodynamics and to appreciate the relevance of catalyst activity, selectivity, deactivation and regeneration.	A	1
5	Recognize assumptions and limitations in the scientific models and their possible impact on the results by training on case studies, lectures, assignments, quizzes	U	1, 2
6	Having a clear understanding of the subject-related concepts and contemporary issues.	U	4

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Adsorption at Liquid Surfaces	8	1
1.1. Adsorption at liquid surfaces		
1.2. Gibb's equation and its verification, adsorption forces		
1.3. Thermodynamics of physical adsorption, Heat of adsorption and its determination.		
Unit 2: Adsorption on Solids	8	2
2.1. Adsorption on solids, Langmuir adsorption isotherm, Multilayer adsorption, BET and Polanyi models for the adsorption.		
2.2. Electrical phenomena at interfaces including electrokinetic potentials		
2.3. Micelles, Critical Micelle Concentration (CMC).		
2.4. Relevance of surfaces and interfaces: colloids, nanomaterials & biology		
Unit 3: Characterization of Solid Surfaces	8	3
3.1. Harkins and Jura equation and other methods for measurements of the surface area of solids		
3.2. Diffraction and thermal methods - Powder X-Ray diffraction- peak		
broadening and particle size analysis, N_2 adsorption -surface area,		
pore size analysis, thermal analysis using TGA and DTA		
3.3. Morphology and particle size analysis - SEM, AFM and HR-TEM		
Unit 4: Adsorption Behaviour of Porous Materials	8	4, 5
4.1. Porous solids, Pore size distribution		
4.2. Adsorption behaviour of porous materials, hysteresis of adsorption		
4.3. Theory of surface reactions		
4.4. Molecular sieves, Capillary condensation, micro-pore analysis.		
Unit 5: Catalysis	8	1, 2, 5,
5.1. Homogeneous catalysis, Autocatalysis and oscillating reaction,		6
5.2. Kinetics of homogeneous catalysis		
5.3. Heterogeneous catalysis		
5.4. Kinetics of heterogeneous catalysis		
5.5. Development of catalysts		
5.6. Enzyme catalysis.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative				
Assessment	Mode of Assessment				
Types	A. Continuous Internal Assessment (CIA)				
	 Internal Test – On MCQ based and on extended answer type 				
	 Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 				
	B. End semester examination				

- 1. P. W. Atkins, Julio de Paula, Atkins' Physical Chemistry, Oxford University Press, 9th Edn. Reprinted, 2011.
- 2. P. Bolgar, H. Lloyd, A. North, V. Oleinikovas, S. Smith, J. Keeler, P. Atkins' Physical Chemistry, 11th Edn. Oxford University Press, 2017.
- 3. J. M. Thomas, W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, Wiley, 2015
- 4. I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley, 2007.

SUGGESTED READINGS

- 1. N. Levine, Physical Chemistry, 6th Edn. McGraw Hill, New York, 2011.
- 2. W. Adamson, The Physical Chemistry of Surfaces, 2nd Edn., Wiley. New York, 1998.
- 3. A. Somorjai, Chemistry of Surfaces, 3rd Edn. Wiley, New York, 2005.
- 4. A. Alexander, P. Johnson, Colloid Science, Oxford University Press, Oxford, New York, 1996.
- 5. G. Rothenberg, Catalysis: Concepts and Green Applications, Wiley-VCH, 2008.

CSM21E76 Chemistry of Natural Products

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Chemistry of Natur	Chemistry of Natural Products				
Course Credit	2	2				
Type of Course	ELECTIVE					
Course Code	CSM21E76					
Course Summary & Justification	This course provides an introduction to the broad field of Natural Products Chemistry by reviewing the major classes of Natural Products. The students will study the isolation, classification, identification and synthesis of natural products.					
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100
Pre-requisite	Basic knowledge of o	rganic cher	nistry			

CO No.	Expected Course Outcome	Learning Domains	PSO No.		
1	Provide an overview of the field of natural product chemistry	U	1		
2	Identify the different classes of natural products	An	2		
3	Explain the different methods used for the isolation and purification of natural products	A	2		
4	Discuss the various degradation techniques employed in the structure elucidation of natural products	R	6		
5	Outline the synthesis of typical compounds belonging to different classes of natural products	Ар	7		
6	Understand the pharmacological effects of natural products and their applications in the field of medicinal and drug chemistry.	U	4		
7	Design alternate routes for the synthesis of some terpenes and alkaloids	С	6, 7		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: ALKALOIDS	10	1-7
Content for Classroom Transaction (Sub-units)		
1.1. General introduction to natural products.		
1.2. Methods for the isolation and purification of natural products		
1.3. Alkaloids- classification,		
1.4. Isolation and purification		
1.5. Methods for the structure elucidation of alkaloids		
1.6. Synthesis of atropine, quinine, reserpine and morphine		
Unit 2: TERPENES	10	1-7
Content for Classroom Transaction (Sub-units)		
2.1. Terpenoids- general properties and classification		
2.2. Methods for the isolation and purification of terpenoids		
2.3. Structure elucidation and synthesis of citral, α -pinene, camphor,		
carotenoids and longifolene. Structure of taxol, synthesis.		
2.4. Biosynthesis of terpenes		
Unit 3: LIPIDS	7	1 ,2, 3
Content for Classroom Transaction (Sub-units)		
3.1. Fatty acids and triglycerides- occurrence, and isolation		
3.2. Classification		
3.3. Membrane lipids		
3.4. Soaps and micelles		
3.5. Biosynthesis of lipids		
Unit 4: STEROIDS	5	1, 2, 3
Content for Classroom Transaction (Sub-units)	5	1, 2, 3
4.1. Steroids- Nomenclature, stereochemistry		
4.1. Sterolds' Nomenciative, stereochemistry 4.2. Physical methods of characterization and properties		
4.3. Cholesterol, ergo sterol, vitamin D, progesterone, testosterone and		
cortisone		
4.4. Biosynthesis of cholesterol		
,		
Unit 5: FLAVANOIDS	3	1, 2, 3
Content for Classroom Transaction (Sub-units)		
5.1. structure and properties of Flavonoids and Isoflavanoids		
5.2. Tests for Flavanoids		
5.3. Isolation and Purification of Flavanoids		
Unit 6: Prostaglandins	3	1, 2, 3,
Content for Classroom Transaction (Sub-units)	_	_, <u>_</u> , ₀ ,
6.1. Prostaglandins – Structure, classification and biological functions		÷
6.2. Types of Prostaglandins, nomenclature, biosynthetic pathway,		
Prostaglandins E2 and F2.		
	1	

Unit 7: Pheromones	2	2, 3, 6
Introduction, examples, and importance in IPM synthesis of juvabione,		
bombycol, grandisol and disparlure.		
Content for Classroom Transaction (Sub-units)		
7.1. Structure and Biological Functions		
7.2. Types of Pheromones		

Teaching and Learning	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments Seminar, Authentic learning,					
Approach	Library work, independent studies Presentation by individual student					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Surprise test					
	 Internal Test – Objective and descriptive answer type 					
	Submitting assignments					
	 Seminar Presentation – select a topic of choice in the concerned area and present in the seminar 					
	B. Semester End examination					

- 1. L. Finar, Organic Chemistry, Vol. 2, 5th Edn. ELBS, 1995.
- 2. N. R. Krishnaswamy, Chemistry of Natural Products: A Laboratory Handbook, CRC Press, 2012.
- 3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2000.
- 4. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Parts A & B, 5th Edn. Springer, 2007.
- 5. P. S. Kalsi, Chemistry of Natural Products, Kalyani Publishers, 2001.
- 6. S. V. Bhat, B. A. Nagasampagi, M. Sivakumar, Chemistry of Natural Products, Springer, 2005.

CSM21E77 Nanomaterials

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Nanomaterials					
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E77					
Course Summary & Justification	that possess remark faced by science and the fundamental und structures, devices a fabrication and cha upcoming section, su which connects nand students to broad ar	Nano-science and technology is the study of materials of small dimensions that possess remarkable properties to address the challenging problems faced by science and society. This elective course, <i>Nanomaterials</i> provides the fundamental understanding of nanomaterials that will create and use structures, devices and systems at nanoscale level. It also includes various fabrication and characterization methods for nanomaterials. In the upcoming section, surface properties of nanoscale materials are included, which connects nanostructures with surface energy. This course will expose students to broad areas like nano-optics, nanotechnological materials and devices that are designed to provide industrial and commercial applications.				
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	0	0	60	100
Pre-requisite	Basic knowledge abo	out chemist	ry at the Ba	chelor's lev	vel.	

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understanding the fundamentals of nanomaterials and familiarises	U	1
	with various synthesis approaches for nanomaterial synthesis.		
2	Describe various types of nanomaterials, nanocrystals, nanoparticles,	U	3
	low dimensional solids like fullerenes, nanotubes and nanowires.		
3	Understand different techniques for nanomaterials characterization	U, A	6, 7
	and apply these tools to evaluate the properties of nanomaterials.		
4	Gain insight into the surface properties of nanomaterials with special	U, An	5
	emphasis on spherical cluster approximation, packing fraction and		
	structural magic numbers.		

5	Build a perspective on nano-optics, Surface Plasmon Resonance (SPR),	U	4	
	colour generation from nanoparticles and quantum dots.			
6	Describe microporous and mesoporous materials from soft building	U	2	
	blocks that have applications in Hydrogen storage systems,			
	coordination frameworks, and crystalline organic frameworks.			
* <i>R</i>	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),			

Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
 Unit 1: Introduction to Nanoscience 1.1. Defining nano-dimensional materials, size effects in nanomaterials. 1.2. Synthesis of nanomaterials: physical and chemical methods of synthesis, Nano fabrication methods: top-down and bottom-up methods, self-assembly, quantum concepts. 	8	1
 Unit 2: Types of Nanostructured materials 2.1. Nanocrystals, nanoparticles, oxide nanostructures 2.2. Low-dimensional solids: fullerenes, nanotubes, nanowires and nanomaterials. 	5	2
 Unit 3: Characterization methods of Nanoparticles 3.1. Electron probe methods: Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) 3.2. Scanning probe microscopy methods: Atomic force microscopy (AFM). 3.3. Spectroscopic methods: UV-Visible Absorption Spectroscopy, X-ray diffraction analysis. 3.4. Non-radiative & non-destruction characterization methods: Determination of particle size, surface area and porosity- BET method, BJH method, Mercury Porosimeter method. 	7	3
 Unit 4: Materials, Structure and the Nano-surface 4.1. Particle shape and the surface: Exterior surface and particle shape, interior nanoscale surface area. 4.2. Surface and Volume: Specific surface area, Spherical cluster approximation 4.3. Atomic Structure: Packing fraction and density, Structural magic numbers. 	7	4
 Unit 5: Nano-optics 5.1. Introduction to nano-optics; Interaction of light with nanoparticles. 5.2. The Surface Plasmon Resonance (SPR), colour generation from nanoparticles. 5.3. Quantum dots. 	7	5
 Unit 6: Microporous and mesoporous materials from soft building blocks 6.1. Zeolite, modular self-assembly of microporous materials. 6.2. Hydrogen storage, coordination frameworks, crystalline organic frameworks. 	6	6

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Direct Instruction, Brain storming lectures, Explicit Teaching, E-learning, Interactive Instruction, Active Co-operative Learning, Seminars, Group Assignments, Authentic Learning, Library Work and Group Discussion, Presentation by individual student/ Group representatives, Progressive tests, Blended Learning, Quizzes and Flipping.						
Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	Internal Test						
	• Seminar Presentation – a theme is to be discussed and						
	identified to prepare a paper and present in the seminar						
	B. Semester End examination						

- 1. H. S. Nalwa, R. Smalley, Encyclopaedia of Nanoscience and Technology, American Scientific Pub. 2004.
- 2. N. R. Rao, A. Govindraj, Nanotubes and Nanowires, 2nd Edn. RSC, 2011.
- 3. J. E. Huheey, R. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity, Prentice Hall, 1997.
- 4. N. R. Rao, A. Muller, A. K. Cheetham, The Chemistry of Nanomaterials, Vol 1 & 2, John Wiley & Sons, 2005.
- 5. G. Schmid, Nanoparticles: From Theory to Applications, John Wiley & Sons, 2011.
- 6. G. L. Hornyak, H. F. Tibbals, J. Dutta, J. J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, 2009.
- 7. G. A. Ozin, A. C. Arsenault, L. Cademartiri, Nanochemistry- A Chemical Approach to Nanomaterials, RSC Publishing, 2009.

CSM21E82 Industrial Chemistry

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Industrial Chemistry	/				
Course Credit	2					
Type of Course	ELECTIVE					
Course Code	CSM21E82					
Course Summary & Justification	Through this course, the students will learn how to apply chemistry for the transformation of materials and energy to manufacture the products which are used in our daily life. The environmental issues caused by industrial pollution, effective waste management techniques and the use of green chemistry as an alternative methodology are discussed in detail. This course bridge the gap between classical chemistry and the chemistry applied in the industries.					
Semester	111	1	1		1	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	-	0	60	100
Pre-requisite	Basic knowledge in Ch	nemistry at t	the Underg	raduate lev	el	

CO	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
1	Describe the fundamental aspects of chemical industry.	U	1		
2	Know the various purification techniques used in chemical industries.	U	1		
3	Gain sound knowledge of the industrial production of some important	U, An	1, 3, 7		
	organic and inorganic compounds or chemicals.				
4	Learn the properties and applications of industrial polymers.	U	1, 3, 7		
5	Evaluate environmental issues related to the chemical industry and waste management.	E	1		
6	Understand the basic concept and applications of green chemistry.	U, An	1, 3		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT	Hours	CO No
Unit 1: Introduction to Industrial Chemistry	3	1
Content for Classroom Transaction (Sub-units)		
1.1. Unit operations and unit processes		
1.2. Flow diagrams		
1.3. Fuels and calorific value		
1.4. Safety measures		
1.5. ISO certification		
1.6. Material and energy balances		
Unit 2: Chemistry in Industrial Processes	5	2
Content for Classroom Transaction (Sub-units)		
2.1. Distillation		
2.2. Liquid-Liquid Extraction		
2.3. Filtration		
2.4. Equipment for heat exchange		
2.5. Crystallization		
2.6. Absorption and adsorption		
Unit 3: Industrially important inorganic materials	6	3
Content for Classroom Transaction (Sub-units)		
3.1. Cement		
3.2. Glass		
3.3. Ceramics		
3.4. Inorganic Fertilizers		
3.5. Refractory materials – carbides and borides, zeolites		
3.6. Molecular sieves		
3.7. NASICON		
Unit 4: Organic Chemical Industries	5	3
Content for Classroom Transaction (Sub-units)		
4.1. Petroleum and Petrochemicals		
4.2. Fermentation		
4.3. Ethanol		
4.4. Pharmaceuticals		
4.5. Oils, Soaps and detergents		
Unit 5: Industrial Polymers	6	4
Content for Classroom Transaction (Sub-units)		
5.1. Polymer liquid crystals		
5.2. Polyolefins		
5.3. polyvinyl carbazides		
5.4. poly acrylics		
5.5. PMMA		

Unit 6: Industrially important materials	5	3
Content for Classroom Transaction (Sub-units)		
6.1. Paints		
6.2. Dyes		
6.3. Pigments		
6.4. Pharmaceutical products		
6.5. Food Chemistry		
6.6. High Energy Materials		
Unit 7: Industrial Waste Management	5	5
Content for Classroom Transaction (Sub-units)		
7.1. Definition		
7.2. Types of Industrial wastes		
7.3. Management of wastes		
7.4. Reuse and recycling		
7.5. Waste treatment		
7.6. Waste utilization and materials recovery		
		6
Unit 8: Green Chemistry	5	6
Content for Classroom Transaction (Sub-units)		
8.1. Introduction and need of green chemistry		
8.2. Principles of green chemistry		
8.3. Tools of green chemistry		
8.4. Examples of green chemistry		

Teaching and Learning Approach	Classroom Procedure Learning Approach Consists of Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests, Blended learning, Quizzes					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Internal Test					
	 Seminar Presentation in a related topic and review a journal paper in a particular area and present before peers 					
	B. Semester End examination					

- Polymer chain flexibility as the basic determinant,
- Structural factors influencing chain flexibility: secondary bond forces, configuration, crystallinity, texture (linearity, branching and crosslinking), pendant groups, ring structure in chain backbone, presence of condensed ring systems and variation in molecular weight.
- Effect of chain flexibility on thermal, rheological and mechanical properties.
- Structural parameters determining optical and electrical properties.
- Theory of random coil, estimation of coil dimensions

- 1. R. W. Thomas, P. J. Farago, Industrial Chemistry, Heinemann Educational Books, 1973
- 2. G. T. Austin, Shreve's Chemical Process Industries, McGraw-Hill, 5th Edn. 2012.
- 3. M. F. Ali, B. M. El Ali, J. G. Speight, Handbook of Industrial Chemistry: Organic Chemicals, McGraw-Hill Education, 2005.

- 4. J. A. Kent, Kent and Reigel's Handbook of Industrial Chemistry and Biotechnology, Springer, 2007.
- 5. K. Sharma, Industrial Chemistry, GOEL Publishing House, 2000.
- 6. H. J. Emeleus, A. G. Sharpe, Modern Aspects of Inorganic Chemistry, UBs Publisher's Distributors Ltd. 2000.
- 7. M. W. Barsoum, Fundamentals of Ceramics, Mc Graw Hill, 1997.
- 8. F. W. Billmeyer Jr., Text Book of Polymer Science, 3rd Edn. Wiley Interscience. 1994.
- 9. J.R. Fried, Polymer Science and Technology, Prentice-Hall, 2002.
- 10. W. M. Morgan, Outlines of paint technology, 3rd Edn. 2000.
- 11. G. Thomas, Fundamentals of Medicinal Chemistry, John Wiley & Sons Ltd., London, 2003.
- 12. O. P. Kharbanda, E. A. Stellworthy, Waste Management- towards a Sustainable Society, Gower, 1990.
- 13. P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford Univ. Press. Oxford, 1998.
- 14. P. T. Anastas, T. C. Williamson, Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes, Oxford Univ. Press. Oxford, 1999.

CSM21E91 Review Report

School Name	School of Chemica	School of Chemical Sciences						
Programme	M.Sc.							
Course Name	Review Report	Review Report						
Course Credit	2	2						
Type of Course	ELECTIVE							
Course Code	CSM21E91							
Course Summary & Justification	under the guidance	The candidate has to do a review on a topic of current research interest under the guidance of a Supervising Teacher of the School of Chemical Sciences and submit the corresponding report at the end of the fourth semester.						
Semester	IV							
Total Student Learning Time (SLT)	Learning Approach	Learning Approach Lecture Tutorial Practical Others Total Learning Hours						
	Literature survey, independent learning							
Pre-requisite								

СО	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
	At the end of the course, the students are expected to				
1	Carry out literature survey-Familiarise with journal abstracting, inculcate a scientific temper and research interest, and make understand and be aware of recent trends in the topic chosen. Journal reading and writing skill.	A	2, 3, 4, 5		
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1, 7		
3	Deeper knowledge of methods in the major subject of study.	А	6		
4	Able to contribute to research and development work.	U	3		
5	Undertake independent, original and critical research on a relevant topic.	U	5		
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6		
7	Create, analyse and critically evaluate different problems and their solutions.	С	2, 3, 6, 7		
8	Gain a consciousness of the ethical aspects of research.	E	7		
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Teaching and	Classroom Procedure (Mode of transaction)
Learning	E-learning, interactive Instruction, Seminar, Authentic learning, Library work,
Approach	laboratory work, Teamwork, independent learning and Group discussion,
	Presentation of research work
Assessment	Mode of Assessment
Types	Evaluation of the presentation by both internal and external examiners

CSM21E92 Industry Visit Report

School Name	School of Chemical Sciences						
Programme	M.Sc.						
Course Name	Industry Visit Repor	Industry Visit Report					
Course Credit	2	2					
Type of Course	ELECTIVE						
Course Code	CSM21E92	CSM21E92					
Course Summary & Justification	of the School of Cher	The students have to visit an industry in the presence of a faculty member of the School of Chemical Sciences during the programme and submit a report on the same at the end of the fourth semester.					
Semester	IV						
Total Student Learning Time (SLT)	Learning Approach						
	Visiting the industry and interacting with the personnel	-	-	-	-	-	
Pre-requisite	Basic knowledge in chemistry practicals and industrial chemistry						

СО	Expected Course Outcome	Learning	PSO		
No.		Domains	No.		
	At the end of the course, the students are expected to				
1	Demonstrate the applications of chemical concepts and principles learned in the classroom.	A	1, 2, 3		
2	Illustrate processes and products manufactured in the chemical industries.	A	2, 4		
3	Develop awareness of the principles and technological aspects of the chemical industries.	С	2		
4	Improve interpersonal skills by communicating directly with industrial personnel.	S	5		
5	Aware of the impacts of industrial processes on health, safety, environment and society.	E	6, 7		
*Rer	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Inter	rest (I) and Appreciation (Ap)				

Teaching and	Main aim of industrial visit is to provide an exposure to students about				
Learning	practical working environment. They also provide students a good				
Approach	opportunity to gain full awareness about industrial practices. Through				
	industrial visit students get awareness about new technologies.				

Assessment	Mode of Assessment
Types	The report shall be evaluated by the Examination Board consisting of the
	Chairman, the Internal Examiner and the External Examiner.

CSM21E94 Instrumental Methods in Organic Chemistry

School Name	School of Chemica	al Sciences					
Programme	M.Sc.						
Course Name	Instrumental Methods in Organic Chemistry						
Course Credit	2						
Type of Course	ELECTIVE	ELECTIVE					
Course Code	CSM21E94						
Course Summary & Justification	The study of Instrumental Methods in Organic Chemistry introduces the basic as well as advanced concepts and applications of instrumental methods of organic chemistry. Through this learning, it is possible to acquire relevant conceptual and procedural knowledge, and to develop an understanding and appreciation of developments in various analytical fields. This course will provide a strong foundation in the key concepts to advanced fields like 3D NMR, Solid-state NMR, Augur spectroscopy, and so on. Understanding of this subject will enable the students to work in frontier areas of multidisciplinary sciences.						
Semester	IV	IV					
Total Student Learning Time (SLT)	Learning Approach	Learning Lecture Tutorial Practical Others Total					
Pro roquicito	Authentic learning400060100CollaborativelearningIndependentI						
Pre-requisite	Basic knowledge ab	out chemist	ry at the Ba	icheiors ieve	21		

CO No.	Expected Course Outcome		PSO No.
		Domains	-
1	Understand the fundamentals of various types of chromatographic	U	1
	techniques		
2	Get an idea about the application and instrumentation of Optical	U, An	2, 3
	Rotatory Dispersion and Circular Dichroism	,	,
3	Understand the different mass spectrometric methods at in advanced	U, An	2, 3
	level		
4	Understand the basic concepts of INDOR and NDMR spectroscopy	U	6, 7
	,	_	,

5	Acquire knowledge about the modern techniques used in organic	A, An	6, 7
	chemistry		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Content for Classroom Transaction (Sub-units)	10	2, 3, 4
Unit 1: Spectroscopic Methods		
1.1. Principles, Instrumentation, and Applications of the following		
Spectroscopic Techniques		
1.1.1. Infra-red (IR) Spectroscopy		
1.1.2. UV-Visible Spectroscopy		
1.1.3. Raman Spectroscopy		
1.1.4. Photoluminescence (PL) Spectroscopy		
1.1.5. Fluorescence Spectroscopy		
1.2. Basic principles of Chromatography-History, Classification, Principle		
& basic theory of chromatography		
Unit 2: Thermal Methods of Analysis and Electron Microscopic Techniques	8	5
2.1. Principle, Instrumentation and Applications of the following Thermal		
Analysis Techniques		
2.1.1. Thermogravimetric analysis (TGA),		
2.1.2. Differential thermal analysis (DTA),		
2.1.3. Differential Scanning Calorimmetry (DSC)		
2.1.4. Thermomechanical Analysis (TMA)		
2.1.5. Dynamic Mechanical Analysis (DMA)		
2.1.6. Applications of DTA, DSC, TGA, TMA and DMA in characterization of materials		
2.2. Principle, Instrumentation, and Applications of the following Electron		
Microscopic Techniques		
2.2.1. Scanning Electron Microscopy (SEM)		
2.2.2. Transmission Electron Microscopy (TEM)		
2.2.3. Atomic Force Microscope (AFM)		

 Unit 3: Chromatographic Techniques: Types of chromatography 3.1. Liquid Chromatography: Introduction, Column adsorption chromatography, Partition chromatography, Band broadening & column efficiency, Factors affecting, Plate theory & Rate theory of chromatography, Types of Liquid chromatography. 3.2. Theory, principle and Instrumentation of HPLC, Types of columns, Column efficiency, Pumps, Various types of detectors, Injection system, Isocratic and gradient elution, Normal phase and Reverse phase liquid chromatography, Development of HPLC and UPLC method, Choice of stationary and mobile phase, Difference between HPLC and UPLC, Applications. 3.3. Gas Chromatography Introduction, Types of Gas chromatography, Theory principle and Instrumentation of gas chromatography, Carrier gas, Injection port, Types columns, Solid inert support, Stationary phase, Mobile phase, Role of Detectors, Thermal conductivity detector, Flame Ionization detector, Flame photometric detector, Development of GC method, Column silanization, Factor affecting to separation, Temperature programming, Application. 3.4. Thin Layer Chromatography Introduction, Theory, Principle and Instrumentation of thin layers on plates, Application of sample on the chromoplates, Choice of adsorbent, Choice of mobile phase, Detecting reagent, Developing chamber, Developing and detection, Ascending, Descending and two dimensional TLC development, Impurity profiling with the help of TLC, Applications 	10	1
 3.5. Paper Chromatography and Hyphenated techniques Paper Chromatography - Introduction, Types of PC, Theory, principle and technique of PC, Types of paper, Modification of the paper, Choice of solvents, Rf value measurement, Sample application, Precautions in PC, Quantitative estimation by PC, Applications. Hyphenated techniques - GC-MS, HP-TLC, LC-MS, etc. Principle & Application 3.6. Flash Chromatography -Theory and applications 3.7. Flow Chemistry Equipment 		
Unit 4: Optical Rotatory Dispersion and Circular Dichroism Spectroscopy	5	2
4.1. Theory and applications of ORD and CD, Cotton Effect, Octant Rule	_	
4.2. Faraday and Kerr effects		
4.3. Instruments for measuring ORD and CD		
Unit 5: Other commonly used Instruments	7	5
5.1. Microwave Synthesis Equipment		
5.2. Rotary Evaporators		
5.3. Temperature Control Equipment		
5.4. Ultrasonic Devices		

Teaching and	Classroom Procedure: Learning Approach Consists of				
Learning Direct Instruction: Brain storming Lecture, Explicit Teaching, E-learning					
Approach	Interactive Instruction, Seminar, Group Assignments, Flipping, Progressive tests, Blended learning, Quizzes				

Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	Internal test
	Assignment
	 Seminar presentation in a related topic
	B. Semester End examination

- 1. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical Chemistry, 9th Edn. Saunders College Pub. 2013
- 2. G. R. chatwal, S. K. Anand, Instrumental methods of Chemical analysis, Himalaya publishing House, 2011
- 3. E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill Education, 2001.

CSM21086 Environmental Chemistry

School Name	School of Chemical Sc	iences					
Programme	M.Sc.						
Course Name	Environmental Chemi	istry					
Course Credit	4						
Type of Course	OPEN COURSE						
Course Code	CSM21086						
Course Summary& Justification	environment. This cou environmental issues su This course addresses v water and soil and d Learning this course i	This course aims to apply chemical principles to the study of the environment. This course includes the natural chemical processes and environmental issues such as global warming, air, water, and soil pollution. This course addresses various techniques used to analyse the quality of air, water and soil and describes effective waste management methods. Learning this course is essential to understand and develop possible methods to reduce pollution and thereby attain environmental protection and curtainability.					
Semester	III						
Total Student Learning Time (SLT)	Learning Approach	Learning Approach Lecture Tutorial Practical Others Learning Hours					
	Others include Group discussions, Seminars, Independent Learning, etc.	40	40	0	40	120	
Pre-requisite	Nil						

CO No.	Expected Course Outcome		PSO No
1	Gain knowledge of the natural cycles of the environment	domain U	1
2	Understand how human activities affect environment and analyse its consequences	U, An	1
3	Describe the causes of air, soil and water pollution and appreciate suitable waste management techniques	U, Ap	1
4	Evaluate various methods to determine the quality of air, water and soil.	An, E	2, 3
5	Understand the instrumental techniques used to analyse environment.	U, An	2, 3
6	Develop mitigation strategies for reducing environmental pollution	Е, С	3, 5, 7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT	Hours	CO No
Unit 1: Environment	20	1-6
Content for Classroom Transaction (Sub-units)		
1.1. Global warming		
1.2. Ozone hole		
1.3. Environmental segments		
1.4. Hydrological cycle		
1.5. Oxygen cycle		
1.6. Nitrogen cycle		
1.7. Sulphur cycle		
1.8. Composition of atmosphere		
1.9. Earth's radiation balance		
1.10. Greenhouse effect		
Unit 2: Air pollution	15	3, 4
Content for Classroom Transaction (Sub-units)		-, -
2.1. Primary pollutants		
2.2. Acid rain		
2.3. Air quality standards		
2.4. Sampling, Monitoring and Analysis of CO, nitrogen oxides, sulphur		
oxides, hydrocarbons and particulate matter		
2.5. Control of air pollution		
Unit 3: Soil pollution	15	3, 4
Content for Classroom Transaction (Sub-units)		
3.1. Inorganic and organic components in soil		
3.2. Acid-Base and ion exchange reactions in soils		
3.3. Micro and macronutrients		
3.4. Wastes and pollutants in soil		
Unit 4: Water pollution	15	3, 4
Content for Classroom Transaction (Sub-units)		
4.1. Water pollutants		
4.2. Eutrophication		
4.3. Water quality criteria for domestic and industrial uses		
4.4. Trace elements in water		
4.5. Determination of quality parameters		
4.5.1. Total hardness		
4.5.2. TDS		
4.5.3. pH		
4.5.4. Chloride		
4.5.5. Heavy metals		
4.6. Principles of water and wastewater treatment		
4.6.1. Aerobic treatment		
4.6.2. Anaerobic treatment		
4.7. Industrial wastewater treatment		
4.8. Removal of organic and inorganic materials from water and waste		
	1	

Unit 5: Instrumental techniques in environmental analysis	15	5, 6
Content for Classroom Transaction (Sub-units)		
5.1. Neutron activation analysis		
5.2. ASV		
5.3. AAS		
5.4. GC		
5.5. HPLC		
5.6. Ion selective electrodes		
5.7. Ion chromatography in environmental chemical analysis		

Teaching and Learning Approach	Classroom Procedure (mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Peer teaching and learning, Technology-enabled learning, Library work
Assessment Types	 Mode of Assessment A. Continuous Internal Assessment (40%) Internal Tests, Assignments, Seminar Presentation, Review Report B. End Semester Examination (60%)

References

- 1. G. W. VanLoon, S. J. Duffy, Environmental Chemistry, Oxford University Press, 2005
- 2. J. Girard, Principles of Environmental Chemistry, Jones & Bartlett Learning, 2005.
- 3. S. E. Manahan, Environmental Chemistry, Seventh Edition, CRC Press, 2010
- 4. E. R. Weiner, Applications of Environmental Chemistry, CRC Press, 2010.
- 5. I. I. Williams, Environmental Chemistry, John Wiley, 2001.
- 6. G. Schwedt, The essential guide to environmental chemistry, John Wiley, 2001.

CSM21O87 Science and Society

School Name	School of Chemical	Sciences				
Programme	M.Sc.					
Course Name	Science and Society	Science and Society				
Course Credit	4					
Type of Course	OPEN COURSE					
Course Code	CSM21087					
Course Summary& Justification	provide a critical under society and vice-ver developments of scie deals with various pro Finally, consciousness further offers the pro- growth in diverse fir course, students wil	This open course is designed as a multidisciplinary course that aims to provide a critical understanding for learners of the significance of science in society and vice-versa. The syllabus covers the history of science, developments of sciences, and approaches in science. The syllabus also deals with various processes and approaches adopted in scientific research. Finally, consciousness about scientific ethics is also discussed. This course further offers the prospects for understanding the contemporary trends and growth in diverse fields of scientific research. After completion of this course, students will be able to correlate the mutual relationship and significance between science and society.				
Semester	ш		1	1		1
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Others include Group discussions, Seminars, Independent Learning, etc.	40	40	0	40	120
Pre-requisite	Nil					

CO No.	Expected Course Outcome	Learning domain	PSO No
1	To acquire a concrete understanding of the importance of scientific knowledge and its implications in society	U, An, I, Ap	3, 5
2	To provide sufficient knowledge about the history of major scientific discoveries and developments	R, U, E, Ap	3, 5
3	To understand the peculiarities of scientific approaches	U <i>,</i> A	3 <i>,</i> 5
4	To Correlate the relationship between scientific and social developments in mankind	An, E, I	3,5
5	To outline the basic steps in scientific research	U, A	3,5
6	To develop critical thinking and reasoning ability among learners	A, An, E, S	1,3,5

7	To impart scientific ethics among learners	U, A	2, 3	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest				
(I) and Appreciation (Ap)				

COURSE CONTENT

	Hours	CO No
Unit 1: The Scientific Approach		1-7
Process of science and the nature of scientific knowledge. Science as a creative		
human activity. The evolution of modern Science and Technology. Ideas in		
science: Research Process, hypotheses, theories and laws. The process of		
science beyond methods: science as an art, creativity in science, scientific		
controversy.		
Unit 2: The History of Science	10	
Ancient civilisation in India, China, Babylon, Egypt, Greece, Rome, Aristotelian		
views, Archimedes, The Copernican revolution, Contributions of Galileo, Louis		
Pasteur, Newton, Einstein, Linus Pauling, Developments and Revolutions in		
various branches of science, Science in twenty-first century		
Unit 3: Teaching critical thinking	10	
Improving reasoning, Critical thinking, Affective strategies, Cognitive		
strategies, Media role, Science and knowledge, Beliefs, Justification		
Unit 4: The Practice of science	30	
Research methods-comparison, description, experimentation, and modelling. Identification of a problem, determination of the mode of attack, literature		
survey, mode of approach of actual investigation, abstraction of the research		
paper, drawing influences from data, qualitative and quantitative analysis,		
internet and its applications, e-journals, assessing the status of the problem,		
results and conclusions, presenting a scientific seminar, publication of research		
paper, art of writing a thesis.		
Unit 5: Scientific ethics	8	3, 7
		3,7
Verifiability and reproducibility, Plagiarism, IPR, Cyber laws, Internet security		

Teaching and Learning Approach	Classroom Procedure (mode of transaction) Direct Instruction: Lecture, Explicit Teaching, E-learning Interactive Instruction: Active co-operative learning, Seminar, Group Assignments, Peer teaching and learning, Technology-enabled learning, Library work	
Assessment Types	Mode of Assessment A. Continuous Internal Assessment (40%) • Internal Tests, Assignments, Seminar Presentation, Review Report B. End Semester Examination (60%)	

Main References

1. J. S. Avery, Science and Society, World scientific Publishing Company.

Suggested Reading

- 1. J. D. Bernal, Science in history, 1-4 Volumes, MIT Press, Cambridge, 1971.
- 2. W. Durant, The Story of Civilization, Simon and Schuster Publishers, United States, 1975
- 3. B. Russell, The Scientific Outlook, Routledge Classics, United Kingdom, 2009
- 4. K. Sujatha, S. Kurien, Evolution of the Philosophy of Science-Literary Perspectives, Ane Books Pvt. Ltd, 2011.
- 5. G. Gammow, One, two, three...infinity, Dover Publications, INC, NewYork, 1974
- 6. T. Crump, A Brief History of Science, Universities Press, 2001.
- 7. B. N. Ghosh, Lectures on Scientific Method, Sterling, 1986.

Approval Date	
Version	
Approval by	
Implementation Date	